
Assignment : 1

Name : A Gopi

Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits
starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence,
starting from the max number played by the user. User enters the next 1 or 2 or 3 next digits in
sequence, starting from the max number played by the computer. Whoever reaches 20 first wins
the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

Example 1:

Player: 1 2

Computer played: [3, 4]

Player: 5 6 7

Computer played: [8, 9]

Player: 10

Computer played: [11, 12, 13]

Player: 14 15

Computer played: [16, 17, 18]

Player: 19 20

Player Wins!!!

Program:
import random

def computer_play(max_played):

 # Computer randomly picks between 1 and 3 digits in sequence

 pick = random.randint(1, 3)

 return list(range(max_played + 1, max_played + pick + 1))

def player_play(max_played):

 while True:

 try:

 # Player enters 1, 2, or 3 numbers in sequence starting from the max_played + 1

 player_input = input(f"Your turn! Enter 1, 2, or 3 numbers in sequence starting from
{max_played + 1}: ")

 player_numbers = list(map(int, player_input.split()))

 if len(player_numbers) in [1, 2, 3] and player_numbers[0] == max_played + 1 and
all(player_numbers[i] == player_numbers[i-1] + 1 for i in range(1, len(player_numbers))):

 return player_numbers

 else:

 print("Invalid input. Please enter numbers in sequence starting from the correct
number.")

 except ValueError:

 print("Invalid input. Please enter numbers separated by spaces.")

def play_game():

 max_played = 0

 winning_number = 20

 while max_played < winning_number:

 # Player's turn

 player_numbers = player_play(max_played)

 max_played = player_numbers[-1]

 print(f"Player played: {player_numbers}")

 if max_played >= winning_number:

 print("Player Wins!!!")

 break

 # Computer's turn

 computer_numbers = computer_play(max_played)

 max_played = computer_numbers[-1]

 print(f"Computer played: {computer_numbers}")

 if max_played >= winning_number:

 print("Computer Wins!!!")

 break

Start the game

play_game()

Output:

Example 2:

Player: 1

Computer played: [2, 3]

Player: 4 5

Computer played: [6, 7, 8]

Player: 9 10

Computer played: [11]

Player: 12

Computer played: [13]

Player: 14 15

Computer played: [16]

Player: 17 18

Computer played: [19, 20]

Computer Wins!!!

Program :

import random

def computer_move(current_number):

 # Computer can pick between 1 and 3 numbers in sequence

 move_count = random.randint(1, 3)

 move = list(range(current_number + 1, current_number + 1 + move_count))

 return move

def user_move(current_number):

 while True:

 user_input = input(f"Enter your move (1, 2, or 3 numbers starting from {current_number +
1}): ").strip()

 try:

 # Split the input into individual numbers and convert to integers

 user_numbers = list(map(int, user_input.split()))

 # Check if numbers are sequential and start correctly from current_number + 1

 if len(user_numbers) in [1, 2, 3] and all(user_numbers[i] == current_number + i + 1 for i
in range(len(user_numbers))):

 return user_numbers

 else:

 print(f"Invalid move. Please enter a sequence starting from {current_number + 1}.")

 except ValueError:

 print("Please enter valid numbers.")

def number_game():

 print("Welcome to the Number Game! First to reach 20 wins.")

 current_number = 0

 while current_number < 20:

 # User's turn

 user_numbers = user_move(current_number)

 current_number = user_numbers[-1]

 print(f"Player played: {user_numbers}")

 if current_number >= 20:

 print("Player Wins!")

 break

 # Computer's turn

 computer_numbers = computer_move(current_number)

 current_number = computer_numbers[-1]

 print(f"Computer played: {computer_numbers}")

 if current_number >= 20:

 print("Computer Wins!")

 break

Start the game

number_game()

Output:

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this
function to print pascal triangle, where number of rows is the input

Program:

Function to calculate nCr (binomial coefficient)
def ncr(n, r):
 if r > n:
 return 0
 # Use the factorial formula for combinations nCr = n! / (r! * (n-r)!)
 num = 1
 den = 1
 for i in range(r):
 num *= (n - i)
 den *= (i + 1)
 return num // den

Function to print Pascal's Triangle
def print_pascals_triangle(rows):
 for n in range(rows):
 # Print spaces for formatting
 print(" " * (rows - n), end="")

 # Print the values in each row
 for r in range(n + 1):
 print(ncr(n, r), end=" ")
 print() # Newline after each row

Input: Number of rows in Pascal's Triangle
rows = int(input("Enter the number of rows for Pascal's Triangle: "))
print_pascals_triangle(rows)

Output :

Enter the number of rows for Pascal's Triangle: 4
 1
 1 1
 1 2 1
 1 3 3 1

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated elements
with frequency count in a list.

Program :

Function to count the frequency of elements in the list
def print_frequency_count(lst):
 # Create an empty dictionary to store frequency of elements
 frequency = {}

 # Iterate through the list and count frequencies
 for item in lst:
 if item in frequency:

 frequency[item] += 5
 else:
 frequency[item] = 1

 # Print each element with its frequency count
 for key, value in frequency.items():
 print(f"Element {key} has come {value} times")

Input: Reading list of numbers at runtime
input_list = list(map(int, input("Enter the list of numbers separated by space: ").split()))

Call the function to print frequency count
print_frequency_count(input_list)

Example :/ Output:

Input:- [2,1,2,3,4,5,1,3,6,2,3,4]

Output:-

Element 2 has come 3 times

Element 1 has come 2 times

Element 3 has come 2 times

Element 4 has come 2 times

Element 1 has come 1 times

Element 6 has come 1 times

Question 4:-

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and
perform the addition of Matrices A & B and Print the results

Program :
def read_matrix(file):

 with open(file, 'r') as f:

 matrix = [list(map(int, line.split())) for line in f.readlines()]

 return matrix

def add_matrices(A, B):

 return [[A[i][j] + B[i][j] for j in range(2)] for i in range(2)]

def print_matrix(matrix):

 for row in matrix:

 print(" ".join(map(str, row)))

if __name__ == "__main__":

 A = read_matrix('matrices.txt')[:2] # Read first 2 lines for Matrix A

 B = read_matrix('matrices.txt')[2:] # Read last 2 lines for Matrix B

 result = add_matrices(A, B)

 print("Result of A + B:")

 print_matrix(result)

Input:

Matrix – A

1 2

3 4

Matrix – B

5 6

7 8

Output
6 8

10 12

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator

Program:
import math

class Fraction:
 def __init__(self, numerator, denominator):
 if denominator == 0:
 raise ValueError("Denominator cannot be zero.")
 self.numerator = numerator
 self.denominator = denominator
 self.simplify()

 def simplify(self):
 """Simplify the fraction by dividing both numerator and
denominator by their GCD."""
 gcd = math.gcd(self.numerator, self.denominator)
 self.numerator //= gcd
 self.denominator //= gcd

 def __add__(self, other):
 """Overloads the + operator to add two fractions."""
 if isinstance(other, Fraction):
 # Calculate the new numerator and denominator
 new_numerator = self.numerator * other.denominator +
other.numerator * self.denominator
 new_denominator = self.denominator * other.denominator
 return Fraction(new_numerator, new_denominator)
 else:
 raise TypeError("Can only add Fraction objects.")

 def __str__(self):
 """String representation of the fraction."""
 return f"{self.numerator}/{self.denominator}"

Example usage
fraction1 = Fraction(1, 2) # Represents 1/2
fraction2 = Fraction(1, 3) # Represents 1/3

Adding the fractions
result = fraction1 + fraction2
print(f"The result of {fraction1} + {fraction2} is {result}")

Output :

The result of 1/2 + 1/3 is 5/6

