
Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits starting

from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence, starting from the

max number played by the user. User enters the next 1 or 2 or 3 next digits in sequence, starting from

the max number played by the computer. Whoever reaches 20 first wins the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

1 .# number game betwwen user and computer

import random

def computer_turn(current):

 # Computer chooses 1, 2, or 3 sequential numbers, stopping at 20 if possible

 max_choice = min(current + 3, 20)

 choice = list(range(current + 1, max_choice + 1))

 print("Computer Played:", choice)

 return choice[-1]

def user_turn(current):

 while True:

 user_input = input("You Played (enter 1, 2, or 3 sequential numbers starting from {}):

".format(current + 1))

 user_numbers = list(map(int, user_input.split(',')))

 # Check if user's numbers are valid

 if len(user_numbers) < 1 or len(user_numbers) > 3:

 print("Invalid input. Enter 1, 2, or 3 numbers.")

 continue

 if user_numbers[0] != current + 1 or any(user_numbers[i] != user_numbers[i - 1] + 1 for i in range(1,

len(user_numbers))):

 print("Numbers must be sequential starting from", current + 1)

 continue

 if user_numbers[-1] > 20:

 print("You can't go beyond 20.")

 continue

 print("You Played:", user_numbers)

 return user_numbers[-1]

def play_game():

 current = 0

 print("Welcome to the number game! First to reach 20 wins.")

 while current < 20:

 # User's turn

 current = user_turn(current)

 if current >= 20:

 print("Congratulations! You reached 20 and won the game!")

 break

 # Computer's turn

 current = computer_turn(current)

 if current >= 20:

 print("Computer reached 20 and won the game!")

 break

Start the game

play_game()

output:

Welcome to the number game! First to reach 20 wins.

You Played (enter 1, 2, or 3 sequential numbers starting from 1): 1

You Played: [1]

Computer Played: [2, 3, 4]

You Played (enter 1, 2, or 3 sequential numbers starting from 5): 5,6,7

You Played: [5, 6, 7]

Computer Played: [8, 9, 10]

You Played (enter 1, 2, or 3 sequential numbers starting from 11): 11,12

You Played: [11, 12]

Computer Played: [13, 14, 15]

You Played (enter 1, 2, or 3 sequential numbers starting from 16): 16

You Played: [16]

Computer Played: [17, 18, 19]

You Played (enter 1, 2, or 3 sequential numbers starting from 20): 20

You Played: [20]

Congratulations! You reached 20 and won the game!

2.#Print Pascal Triangle for given number of rows

def factorial(num):

 """Calculate the factorial of a number."""

 if num == 0 or num == 1:

 return 1

 result = 1

 for i in range(2, num + 1):

 result *= i

 return result

def ncr(n, r):

 """Calculate the number of combinations of n items taken r at a time."""

 if r > n or r < 0:

 return 0

 return factorial(n) // (factorial(r) * factorial(n - r))

def print_pascals_triangle(rows):

 """Print Pascal Triangle with the given number of rows."""

 for i in range(rows):

 # Print leading spaces for formatting

 print(" " * (rows - i), end='')

 for j in range(i + 1):

 print(ncr(i, j), end=' ')

 print() # New line after each row

Main function to execute the program

if __name__ == "__main__":

 num_rows = int(input("Enter the number of rows to Print Pascal Triangle: "))

 print_pascals_triangle(num_rows)

output:

Enter the number of rows to print Pascal Triangle: 4

 1

 1 1

 1 2 1

 1 3 3 1

3.# program to print the repeated elements with frequency count

def count_frequencies(numbers):

 """Count the frequency of each element in the list."""

 frequency = {}

 for number in numbers:

 if number in frequency:

 frequency[number] += 1

 else:

 frequency[number] = 1

 return frequency

def print_frequencies(frequency):

 """Print the frequency of each element."""

 for element, count in frequency.items():

 print(f"Element {element} has come {count} times")

if __name__ == "__main__":

 # Read input from the user

 user_input = input("Enter a list of numbers separated by spaces: ")

 numbers = list(map(int, user_input.split()))

 # Count frequencies and print them

 frequency = count_frequencies(numbers)

 print_frequencies(frequency)

output:

Enter a list of numbers separated by spaces: 1 3 2 4 5 1 2 3 4 5

Element 1 has come 2 times

Element 3 has come 2 times

Element 2 has come 2 times

Element 4 has come 2 times

Element 5 has come 2 times

5.# add two objects of class fraction

class Fraction:

 def __init__(self, numerator, denominator):

 if denominator == 0:

 raise ValueError("Denominator cannot be zero")

 self.numerator = numerator

 self.denominator = denominator

 def __add__(self, other):

 if not isinstance(other, Fraction):

 return NotImplemented

 # Find a common denominator

 common_denominator = self.denominator * other.denominator

 new_numerator = (self.numerator * other.denominator) + (other.numerator * self.denominator)

 return Fraction(new_numerator, common_denominator)

 def __str__(self):

 return f"{self.numerator}/{self.denominator}"

 def __repr__(self):

 return f"Fraction({self.numerator}, {self.denominator})"

 def simplify(self):

 from math import gcd

 common_divisor = gcd(self.numerator, self.denominator)

 self.numerator //= common_divisor

 self.denominator //= common_divisor

Example usage

f1 = Fraction(1, 2)

f2 = Fraction(1, 3)

result = f1 + f2

result.simplify() # Simplifying the result

print(result)

Output: 5/6

