
TGA: An Oracle-less and Topology-Guided Attack on Logic
Locking

Yuqiao Zhang∗

yuqiao.zhang@auburn.edu

Auburn University

Auburn, Alabama, USA

Pinchen Cui†

pinchen@auburn.edu

Auburn University

Auburn, Alabama, USA

Ziqi Zhou∗

ziqi.zhou@auburn.edu

Auburn University

Auburn, Alabama, USA

Ujjwal Guin∗

ujjwal.guin@auburn.edu

Auburn University

Auburn, Alabama, USA

ABSTRACT

Due to the outsourcing of semiconductor design and manufactur-

ing, a number of threats have emerged in recent years, and they are

overproduction of integrated circuits (ICs), illegal sale of defective

ICs, and piracy of intellectual properties (IPs). Logic locking is one

method to enable trust in this complex IC design and manufactur-

ing processes, where a design is obfuscated by inserting a lock to

modify the underlying functionality so that an adversary cannot

make a chip to function properly. A locked chip will only work prop-

erly once it is activated by programming with a secret key into its

tamper-proof memory. Over the years, researchers have proposed

different locking mechanisms primarily to prevent Boolean satisfia-

bility (SAT)-based attacks, and successfully preserve the security of

a locked design. However, an untrusted foundry, the adversary, can

use many other effective means to find out the secret key. In this

paper, we present a novel oracle-less and topology-guided attack

denoted as TGA. The attack relies on identifying repeated functions

for determining the value of a key bit. The proposed attack does

not require any data from an unlocked chip, and eliminates the

need for an oracle. The attack is based on self-referencing, i.e., it

compares the internal netlist to find the key. The proposed graph

search algorithm efficiently finds a duplicate function of the locked

part of the circuit. Our proposed attack correctly estimate a key

bit very efficiently, and it only takes few seconds to determine the

key bit. We also present a solution to thwart TGA and make logic

locking secure.

CCS CONCEPTS

• Security and privacy→Hardware attacks and countermea-

sures;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASHES’19, November 15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6839-1/19/11. . . $15.00
https://doi.org/10.1145/3338508.3359576

KEYWORDS

Logic locking, Boolean functions, overproduction, directed graph,

depth-first search.

ACM Reference Format:

Yuqiao Zhang, Pinchen Cui, Ziqi Zhou, and Ujjwal Guin. 2019. TGA: An

Oracle-less and Topology-Guided Attack on Logic Locking. In 3rd Attacks

and Solutions in Hardware Security Workshop (ASHES’19), November 15,

2019, London, United Kingdom. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3338508.3359576

1 INTRODUCTION

The globalization of the design and manufacturing of integrated

circuit (IC) shifts the semiconductor industry to adopt horizontal

integration from the vertical one, where a system on a chip (SoC)

designer acquires intellectual properties (IPs) from many different

IP vendors and sends their design to an offshore fabrication unit (e.g.,

foundry or fab) for manufacturing. As a result of this globalization,

different threats have emerged in recent years and they are -(i)
overproduction of ICs [3, 7, 13, 16, 31] – an untrusted foundry

produces more chips and sells them in the open market without

the consent of the SoC designers, (ii) sourcing of defective (e.g.,

out-of-specification or rejected) ICs in the market [13, 14, 27], and

(iii) piracy of IPs [6, 37, 38] – an entity in the supply chain illegally

obtains a functional IP. It can either use it, or sell it to a different

entity in the supply chain.

Over the years, researchers proposed different technologies to

prevent these aforementioned attacks. These solutions can be broadly

categorized into IC metering [2, 3, 20, 31], logic locking [13, 28, 31],

hardware watermarking [9, 18, 26], and split manufacturing [17, 40].

However, logic locking gains popularity in recent years to address

these attacks. In logic locking, the original design of a circuit is trans-

formed to a different one. The primary objective of this technique

is to obfuscate the inner details of the circuit so that an adversary

cannot reconstruct the original netlist. The original functionality

can only be reversed, when a secret key is programmed into the

chip. Different logic locking techniques (see Figure 1) have been

proposed over the years, and they are -(i) XOR-based, where a set
of XOR/XNOR gates are inserted to change the functionality [13–

15, 28, 31], (ii)MUX-based [21, 24, 29], (iii) LUT-based [4, 19, 23],

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

75

a
b

y

a
b

y

Memory

a
b

y

Memory

1
0

a
b

y

Memory

(a)

(c) (d)

(b)

k

k

k1 k2 k3 k4

G1

G1G1

Gk

G3

G3G3

G3
G2

G2

G1

G2

Figure 1: Logic locking methods: (a) An original netlist (b)

XOR/XNOR-based logic locking (c)MUX-based logic locking

(d) LUT-based logic locking.

and (iv) state space based [8]. However, XOR-based logic locking

becomes popular due to its simplicity.

Boolean Satisfiability (SAT)-based attack, proposed in [35], has

shown that logic locking techniques can be broken very effectively.

Since then, many different solutions [13–15, 41, 43, 46] have been

proposed to prevent SAT-based attacks. Unfortunately they have

been broken subsequently [22, 32–34, 42, 44, 45]. Even though the

wide popularity of SAT attacks among the research community,

these attacks may have practical limitations for determining the

secret key of a locked netlist. As the attacks require an oracle to

discard equivalent class of incorrect keys, an adversarymust possess

a working chip to launch the attack. An untrusted foundry cannot

unlock the netlist, when it receives the layout information (GDSII

or OASIS files [30]) from the SoC designer. It needs to wait for an

unlocked chip, an oracle, to be available in the market. This can be

challenging asmany of the chips used in critical or DoD applications

are highly unlikely to be circulated (unless it is a commercial-off-the-

shelf, COTS part) in the market. Second, it is yet to be demonstrated

that SAT-attacks can be launched in industrial designs. The attack

even fails to estimate the correct key for a small benchmark circuit

(e.g., c6288, see the details in [35]).

As logic locking was proposed to address the threats from the

untrusted manufacturing, where the adversary is an untrusted

foundry, it can use many other effective techniques rather than

to use SAT to break logic locking. In this paper, we proposed a

novel attack on logic locked circuits to determine the key without

having oracle access to the chips. Can we determine the secret

key simply by analyzing the circuit topology? Contrary to the

SAT-based attacks, we present a novel attack that does not require

an oracle to break logic locking. We denote our proposed attack as

TGA: An Oracle-less and Topology-Guided Attack on logic locked

circuits. By using our proposed TGA, the secret key can be estimated

efficiently even for the circuits that SAT attack fails (see in Section 5

for c6288 circuit). In addition, an untrusted foundry can unlock any

netlists using our proposed TGA without waiting for a working

chip available in the market. The contributions of this paper are as

follows:

• We present a novel attack, TGA, which is based on function

search. The basic functions in a logic cone are generally re-

peated multiple times in a circuit. In this paper, we denote

these functions as unit functions (UFs). If a key gate is placed

in an instance of repeated UFs during the locking of a cir-

cuit, the original netlist can be recovered by searching the

equivalent unit functions (EUFs), which are constructed with

all hypothesis key values. As the UFs are constructed in few

layers of gates (see Section 3.3 for details), the number of

key gates to be placed in them is limited, which limits the

EUF search combinations. Simulation results (see Section 5)

show that we can determine majority of the key bits using

our proposed TGA. Note that no oracle (unlocked chip) is

required to launch our proposed TGA.

• We develop an efficient algorithm that uses Depth-First-

Search (DFS) for finding the equivalent unit functions in the

locked netlist under attack. An adversary first constructs

a directed graph [36] from the netlist to launch the attack.

Note that each gate can be represented as a vertex, and each

wire can be modelled as an edge in the graph that represents

the netlist. In this paper, we demonstrate and implement

a DFS-based UF search algorithm to determine the correct

value of a secret key. The average time to determine a secret

key bit is in the order of seconds. As a result, a locked circuit

can be broken in few minutes, when they are locked with

few hundred/thousand key gates.

• We also present a solution to prevent this proposed TGA.

As an adversary performs EUF search in the netlist for self-

referencing, TGA can be prevented if the search produces

contradictory (or no) results with different hypothesis keys.

TGA resistivity can be achieved if we lock all the repeated

instances of anUF. The sameDFS-based search algorithm can

be used to identify all repeated instances of an unit function.

If a key gate is placed in a repeated UF, it is necessary to

lock all of such UFs so that an adversary cannot reach to a

decision about the actual value of the key bit by comparing

with its unlocked version. The key gates can also be placed

in those unique UFs that are not repeated in the circuit.

The rest of the paper is organized as follows. In Section 2, the

details of XOR-based logic locking technique is presented. Section 3

introduces our proposed TGA. The countermeasure is presented

in Section 4. The simulation results are described in Section 5. In

Section 6, we describe our future work and finally conclude the

paper in Section 7.

2 XOR-BASED LOGIC LOCKING

XOR-based logic locking is a popular locking technique due to its

simplicity. When an XOR gate is inserted to obfuscate the inner

details of a circuit, the overall functionality remains the same when

the correct key is programmed into the chip, and alters for some

input patterns when a wrong key is applied.

Figure 2 shows an example to lock a circuit, which has three

inputs (X1, X2 and X3) and one output (Y). Let us assume that the

circuit is locked using one key gate with key input k . Figure 2.(a)
shows the original circuit. There can be two possible key values,

k = 0 and k = 1. For k = 0, an XOR gate can directly be placed

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

76

X1
X2 YG1 G2 YG1 G2

k = 0

X3

YG1 G2

k = 1

X1
X2

X3

YG1 G2

k = 1

X1
X2

X1
X2

X4

X’4

X4 X4

X4

(a)

(c)

(b)

(d)

Gk

Gk Gk

X3 X3

X’4

X’4

Figure 2: Logic locking using Exclusive OR (XOR) gates. (a)

Original netlist. (b) Locked netlist when k = 0. (c) Case-I :

Locked netlist when k = 1. (d) Case-II : Locked netlist when k
= 1 (using DeMorgan’s Theorem).

at node X4, which is shown in Figure 2.(b). However, for k = 1,

two possible scenarios may occur. One can invert the previous

stage functionality, which is shown in Figure 2.(c). It is also possible

to modify successive stage function using DeMorgan’s Theorem,

shown in Figure 2.(d).

In this example, the original function of the circuit Y = X3 · X4,

where X4 = X1 · X2. It is not necessary to change the functionality

of the preceding or succeeding stages of the XOR gate, when k = 0.

X
′

4 = X4 ⊕ 0 = X4 = X1 · X2 (1)

To preserve the original functionality for k = 1, it is required

either to invert the functionality of the preceding stage (Figure 2.(c))

or compensate the functionality of the following stage (Figure 2.(d))

of the added XOR gate. For the first case, the original functionality

preserves as X
′

4 = 1 ⊕ X4 = X4. For the second case, DeMorgan’s

transformation is necessary and shown below:

Y = X3 + X
′

4 = X3 · X
′

4 = X3 · (1 ⊕ X4) = X3 · X4 (2)

Note that only XOR gates are used in the example to lock the

netlist. However, one can also use XNOR gates for such purposes. It

is important to remember that one cannot use XOR gate for k = 0

and XNOR gate for k = 1 for every key bit. It is then trivial for an

adversary to determine the secret key just by simply observing the

key gates.

3 PROPOSED TOPOLOGY GUIDED ATTACK
ON LOGIC LOCKING

The research community primarily focuses on evaluating the secu-

rity of a logic locking technique through SAT-based analysis after

the seminal attack presented in [35]. However, the SAT-attacks

may pose few practical limitations to an adversary (e.g., untrusted

foundry). An adversary must possess a working chip to launch the

SAT attacks as it is required an oracle to discard equivalent class

of incorrect keys. Note that an untrusted foundry needs to wait

for an unlocked chip available in the market, and simply cannot

unlock it after receiving the layout information (GDSII or OASIS

files [30]) from an SoC designer. Many of the chips used in critical

or DoD applications are rarely circulated in the market. Moreover,

the attack even fails to estimate the correct key for a small bench-

mark circuit (e.g., c6288), and yet to be validated in large industrial

designs. In this section, we present our proposed oracle-less and

topology-guided attack, TGA, to break a logic locked circuit without

possessing an unlocked chip.

3.1 Adversarial Model

The secure logic locking relies upon the fact that an adversary

cannot determine or estimate the secret key from the locked netlist

or an unlocked chip. The secret key is stored in a secure and tamper-

proof memory so that an adversary cannot access the key values

directly from an unlocked chip. In the attack model, the adversary

is assumed to be an untrusted foundry and has the access to the

following:

• Gate-level netlist: As the foundry is the primary attacker,

it can have the access to the gate-level netlist of a locked

circuit. The SoC designers typically send the circuit layout

information using GDSII or OASIS files [30] to a foundry

for chip fabrication. A foundry can extract the gate level

netlist from the GDSII/OASIS files with the help of advanced

tools [39].

• Location of the key gates: An adversary has the capability

to determine the location of key gates. The key gates are

connected either directly or through temporary storage ele-

ments to the tamper-proof memory. An adversary can easily

track the routing path from the tamper-proof memory to the

corresponding gates to determine their locations.

• Locked unit function: It is trivial for an untrusted foundry to

construct equivalent unit functions EUFs for launching TGA,

as it has the netlist and locations of the key gates.

3.2 Motivation for Designing TGA

The basic idea of launching our proposed attack is based on the

repeated functionality that exists in a circuit. The Boolean functions

are generally not unique in a circuit and repeated multiple times

to implement its overall functionality. The majority of circuits are

constructed based on small functional units. For example, several

small functions (we describe as ‘unit functions’ or UFs) are repeated

in an arithmetic logic unit (ALU) of a processor, adders, multipliers,

advance encryption standards (AES), RSA, and many other digital

circuits. If any of such unit functions are not obfuscated during

the logic locking process, all the locked functions will be unlocked

simply by comparing them with their unlocked version.

Figure 3 shows a four-bit ripple carry adder circuit to illustrate

our concept of attacking the logic locked circuit. The adder consists

of eight identical one bit half adders (HA) with inputs (P and Q)
and outputs (S andC). It is clear from the figure that HA is repeated

in the design and can be treated as a UF. If one of these half adders

is locked using an XOR gate, an adversary only need to find an

original HA, and then match this with the locked HA to recover the

key value (see details in Section 3.5).

3.3 Construction of Equivalent Unit Function

The objective of this attack is to find the key value without perform-

ing traditional SAT-based analysis that requires an oracle. When an

untrusted foundry receives the layout and mask information from

the designer, it can reconstruct the gate-level netlist of the locked

circuit by reverse engineering [39]. It can then easily identify the

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

77

HA
P Q

S C

HA
P Q

S C

C0

S0

HA
P Q

S C

HA
P Q

S C

S1

HA
P Q

S C

HA
P Q

S C

S2

HA
P Q

S C

HA
P Q

S C

C3

S3
C4 C1

C1

C2

C2

B0 A0B1 A1B2 A2B3 A3

C3

Figure 3: A 4-bit binary full adder (FA) consists of 8 half

adders (HA). An adversary can recover the netlist for an

locked HA by comparing with other HAs.

key gates by tracking the routes originated from the tamper-proof

memory, where the secret key will be stored.

Our proposed attack constructs an equivalent unit function (EUF)

using a hypothesis key bit, and searches that EUF in the entire netlist

to find a match. The hypothesis key bit will be the actual secret key

bit if a match is found. Otherwise, it constructs another EUF using

the complementary hypothesis key bit and search the netlist again.

The attack for determining a key bit fails, when the search fails to

find a match.

X1
X2

X3

fG1 G2
X3

fG1 G2

k

X1
X2

X3

fG1 G2
X1
X2

X3

fG1 G2
X1
X2

X3

fG1 G2

X1
X2

X4

(a) (b)

(c) (d)

(e)

Gk

X’4

X’4

X’4

X’4X4

Figure 4: Equivalent unit functions for different hypothesis

keys. (a) Original netlist. (b) Locked netlist with key value

k = 1. (c) EUF for hypothesis key kh = 0. (d) EUF for hypoth-

esis key kh = 1 (Case-I). (e) EUF for hypothesis key kh = 1

(Case-II).

Figure 4 shows an example for constructing equivalent unit

functions, which can be used to launch the function search attack.

Figure 4.(a) represents an original unit function to be locked using

a secret key k = 1. The locked circuit is shown in Figure 4.(b). The

adversary does not know the value of the key, simply by observing

the key gate. It first makes an assumption for kh = 0, and constructs

the EUF, which is shown in Figure 4.(c). It then searches this function

in the locked circuit to find a match. If no match is found (as the

actual key is 1), it constructs another EUF for kh = 1. Two possible

scenarios may occur. For Case-I, the output of the previous stage

needs to be inverted (shown in Figure 4.(d)). On the other hand,

DeMorgan’s transformation needs to be carried out to obtain the

EUF for kh = 1 for Case-II, which is shown in Figure 4.(e).

3.4 Unit Function Search using DFS Algorithm

In order to launch the attack, we develop an efficient search algo-

rithm, which performs a search of the EUFs in the locked netlist.

Since the structure of a circuit can be transformed and represented

by a directed graph, all the algorithms that could be used to search

the component in the directed graphs, could also be applied to

search the EUF. Therefore, we propose to use the Depth-First-Search

(DFS)-based algorithm to launch the attack. Generally, the DFS

method follows the rule: in the graph traverse, always select the

next edge from the most recently reached and connected vertex

that still has unexplored edges [36]. In addition, when the problem

comes to find the specific component in the circuit, some prepro-

cessing of the data structure is necessary.

The procedure of DFS-based search is described in Algorithm 1.

For a given netlist, we first need to define a data object structure for

all the gates. The gate object needs to have the following attributes:

gate type (e.g., XOR, AND, etc), name of the gate (i.e., its identifica-

tion in the netlist), an array that contains its preceding gates (i.e., its

inputs), and an array contains its following gates (i.e., its outputs).

Then the circuit structure could be transformed into a dictionary,

in which the keys are the types of the gates and the values are

corresponding gate objects. Dictionary is basically a data structure

that stores mappings and relationships of data [10]. The benefit of

using a dictionary is that it makes the searching of specific type of

gates becomes efficient. When a specific UF need to be searched in

this netlist, we define the last gate of the UF as the root gate (Line

2 in the Algorithm 1). An example root gate is G2 in the Figure 4).

All the gates are searched, which are of the same type with the root

gate in the dictionary (Line 3) and store them into an array. The

DFS is then performed on all these found gates (Line 3-7). Finally,

all the UFs in the netlist will be found and the count of the UF will

be returned as the output (Line 8).

The detailed implementation of the DFS, which is used for search-

ing of UFs, is demonstrated in Lines 9-38. The general idea can be

described as follows: for every gate that is the same type with the

root gate of the UF, we traverse all its preceding gates to check

whether the existence of the same structure. We implement the en-

tire function using Python 2.7 [25]. The worst case time complexity

of the search algorithm is O(n ∗ u), where n is the size of netlist

and u is the size of a unit function. This is an acceptable complexity

result, since it is shown that the subgraph isomorphism problem

is an NP-complete problem and its time complexity is quadratic

in the number of nodes [12, 30]. Note that, the optimization of the

algorithm complexity is not the major objective of this paper. How-

ever, our search strategy slightly reduces the search complexity by

using a dictionary to locate root gates. In this case, the algorithm

performs similar to a substree isomorphism search (or a sequence

of tree isomorphism searches), which complexity is known to be at

least subquadratic [1]. Reading the netlist and transforming it into

a dictionary may have different complexity, and the complexity

we mentioned does not consider the complexity of constructing a

dictionary.

3.5 Proposed TGA using Unit Function Search

The objective of TGA is to find the value of a secret key bit using

unit function search. To determine the value of a key bit ki , different

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

78

Algorithm 1: Function UFS

Unit Function search based on DFS Algorithm.

Input :The gate-level netlist of a circuit (C), Unit Function
(UF)

Output :Result List (LR)

1 ReadC andUF , and transform them into dictionaries,O andT ;

2 R ← UF .root ; LS ← O[R.type]; LR ← ϕ ;

3 for each gate G in LS do

4 if DFS(R,G) then
5 LR .append(G);

6 end

7 end

8 return LR ;

9 Function DFS(r ,д):
10 F ← True;

11 L1 ← r .PrecedingGates; L2 ← д.PrecedingGates;

12 T1 ← L1.types; T2 ← L1.types;

13 if L1 is empty then

14 return True;

15 end

16 for each gate type T in T1 do
17 if gate type T not in T2 then
18 return False;

19 else

20 T2.remove(T)

21 end

22 for each gate RN in L1 do
23 LT ← ϕ ;

24 for each gate GT in L2 do
25 if GT .type = RN .type then

26 LT .append(GT);

27 end

28 end

29 FT ← False;

30 for each gate GN in LT do

31 if DFS(RN ,GN) then

32 FT ← True;

33 break

34 end

35 end

36 F ← F ∗ FT ;

37 end

38 return F

unit functions are constructed corresponding to the hypothesis key

kh = 0 orkh = 1. If amatch is found in the netlist, the corresponding

key will be the secret key.

Algorithm 2 describes our proposed TGA using UFS search. It

takes the locked circuit (C∗) as the input and results the predicted

key (KP) and the success rate (SR).KP contains the value of each key

gates, which is 0, 1, or X. The X represents an unknown value when

the search fails to find a match. The locations of the key gates can

Algorithm 2: TGA

Input :Locked Circuit Netlist (C∗)

Output :List of predicted key values (KP), Success Rate (SR)

1 Read the netlist C∗;

2 Determine the location and number |K | of key gates;

3 Initialization for correct prediction counter, pc ← 0 ;

4 for i ← 1 to |K | do

5 Initialization for layer counter, l ← 1;

6 Construct equivalent unit functions: EU F0 for kh = 0 and

{EU F 11 , EU F 21 } for kh = 1;

7 r0 = UFS(C∗,EU F0).sz();

8 r1 = UFS(C∗,EU F 11).sz() +UFS(C∗,EU F 21).sz();

9 if r0 > 0 and r1 > 0 then

10 l ← l + 1 and go to Line 6;

11 else if r0 > 0 or r1 > 0 then

12 if r0 > 0 then

13 ki ← 0;

14 else if r1 > 0 then

15 ki ← 1;

16 end

17 Write ki into KP ; pc ← pc + 1;

18 else

19 ki ←X and write ki into KP ;

20 end

21 if Key gate is placed in a fan-out net then

22 ki = FV ();

23 Update ki into KP ;

24 end

25 end

26 Compute success rate, SR ←
pc
|K |

× 100%;

27 Output KP , SR;

28 Function FV():
29 Construct different EUFs for the fanout paths;

30 Search EUFs for each path and make key prediction ;

31 if Opposite predictions for different paths then

32 ki ←X ;

33 else if Same predictions for different paths then

34 ki ← {0 or 1};

35 end

36 return ki

be found by tracking the routes originated from the tamper-proof

memory, and their numbers can be determined, |K |. For the key

gate i , three different unit functions, EU F0 for kh = 0, and EU F 11
and EU F 21 for kh = 1, are constructed, (see Figure 4 for details)

and shown in Line 6. The unit function search (UFS) need to be

performed to determine the repeated instances of that EUF (Lines

7-8). r0 and r1 represent the count values (obtained by using sz()

function) for two different key assumptions. If both the r0 and r1
are non-zero, it is necessary to increase the size of the equivalent

unit function by increasing the layer. Here, l denotes how many

layers are considered to construct the unit function. By default, this

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

79

value is 1 (Line 5), which is shown in Figure 4. In the case of both

the r0 > 0 and r1 > 0, the current EU Fs will not help the attacker

to make a decision on the key value, the l needs to be increased by

1 (Line 10) and the algorithm will construct new equivalent unit

functions with more inputs (Line 6).

If one of the r0 or r1 is greater than 0, the attacker makes a

prediction on the key value, and the key value will be written into

KP while the prediction counter (pc) will be increased by 1. The

value of ki will be 0 if r0 > 0, which represents that there is a match

for EU F0 in C
∗ (Line 12). On the other hand, the value of ki will be

1 if r1 > 0, which represents that there is a match for either EU F 11
or EU F 21 in C∗ (Line 14). No decision will be made if both of them

are equal to 0 when the unit function is unique in the circuit and

the adversary cannot make a prediction on the key value. Thus, an

unknown value (X) is assigned to the corresponding key bit location

(Line 19). It is also necessary to verify the key value assignment

when a key gate is placed in a fan-out net (Lines 21-24). In addition,

when a key gate is inserted at the fan-out, the function, FV ()

verifies the key decision on each path. It may happen that different

paths for the same key gate may have different key predictions.

No prediction will be made in case of any two (or more) paths

provides opposite key predictions (Line 32). Correct predictions

will be considered if these different paths make the same prediction

(Line 34).

SR =
pc
|K |

× 100% (3)

Finally, the success rate is computed using Equation 3. The TGA

attack algorithm finally reports predicted key KP and SR (Line 27).

The proposed TGA may also lead to incorrect predictions. For

example, it is possible that the actual key bit is 1 when TGA esti-

mates it as 0, and vice versa. It is thus necessary to measure the

accuracy of the proposed attack. The misprediction rate (MR) of

TGA can be described as the ratio of the incorrect predictions to

the key size and is presented using the following equation:

MR =
pi
|K |

× 100% (4)

where, pi represents the total number of incorrect predictions.

4 COUNTERMEASURE FOR TGA ATTACK

As the TGA relies on self-referencing, it can be prevented if the

insertion of the keys are carried out in such a way that the search

always returns null. In other words, the attack will fail if we choose

to place a key gate in a unique UF in the netlist or lock all the same

UFs simultaneously. In this section, we present an automated key

insertion algorithm that performs UF search in the netlist before

placing a key gate into the netlist.

Algorithm 3 illustrates our proposed algorithm to prevent against

TGA. The inputs of the algorithm are the original unlocked netlist

(C) and key size (<Kmin ,Kmax>), which indicates the number of

key gates that need to be inserted. The algorithm reports the locked

circuit netlist (C∗) with the secret key K∗. In the algorithm, n de-

notes the number of key gates that has been already inserted in the

circuit and initialized to be 0 (Line 1). A gate is selected randomly

from the original and unlocked netlist as the root gate and then

the unit function is created (Lines 3-4). The UFS(C,UF) and .sz()

Algorithm 3: Key gate insertion

Input :Gate level netlist of a circuit (C), Key size

(<Kmin ,Kmax>)

Output :Locked netlist (C∗) and Key value (K∗)

1 Initialization: n ← 0, r ← 0;

2 while n < Kmin do

3 Select a root gate randomly from C;

4 Construct the unit function,UF ;

5 r ←UFS(C,UF).sz();

6 if r = 0 then

7 Insert the key gate and assign key value, ki ;

8 Write key value, K∗[n] ← ki ;

9 n ← n + 1;

10 else if 0 < r ≤ Kmax − n then

11 Lock all the UFs;

12 Write key values to K∗[n + r : n];

13 n ← n + (r + 1);

14 end

15 end

16 Output C∗ and K∗;

functions are executed, which returns r (Line 5). Here, r denotes
the number of this selected unit function repeated in the circuit.

A key gate is inserted in this UF, if r = 0 which represents that it

is unique in the netlist (Line 6). Note that the UF will be modified

randomly based on one of the modifications mentioned in Figure 2.

The key bit value is written in the respective location of K∗, and

the value of n will be increased by 1 (Lines 8-9).

The algorithm chooses a different gate (Line 3) if r > Kmax −

n, otherwise, it locks all the instances of this UF (Line 11). The

respective key bit locations in K∗ are written with the key value

(Line 12). Note that it is not necessary to lock all these instances with

one key value, i.e., all 0s or all 1s. One can choose a combination

of 1s and 0s (circuits shown in Figures 2.(b) - (d)). However, it is

required to lock all the instances. Finally, the value of n is increased

by r + 1. Note that the Algorithm 3 is only designed to prevent TGA.

Additional countermeasures [14, 15] focused on SAT attacks need

to be considered simultaneously to make logic locking secure.

5 SIMULATION RESULTS AND DISCUSSIONS

The effectiveness of our proposed TGA is presented in this section.

We provide an in-depth analysis for key prediction accuracy of TGA

on ISCAS’85 [5] and ITC’99 [11] benchmark circuits. We use a HP

server with Intel Xeon Silver 4116 @2.10GHz processor and 64 GB

of RAM to launch the TGA.

5.1 Performance Analysis

Four different benchmark circuits, c6288, c5315, b15, b17 are first

selected for determining the success rate (SR) and misprediction

rate (MR) of our proposed TGA. We created 100 instances of the

locked circuit for each benchmark, where 128 key gates are placed

randomly, and then attacked using Algorithm 2. For each locked

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

80

circuit, the success rate (SR) is computed using Equation 3, and the

misprediction rate MR is calculated by using Equation 4.

97 98 99 100
SR

(a) c6288

0

50

100

Fr
eq

ue
nc

y

75 80 85 90 95 100
SR

(b) c5315

0

10

20

30

Fr
eq

ue
nc

y

90 95 100
SR

(c) b15

0

10

20

Fr
eq

ue
nc

y

90 95 100
SR

(d) b17

0

10

20

Fr
eq

ue
nc

y

Figure 5: Histogram plots of the SR for different benchmark

circuits with 128 key bits: (a) c6288 (b) c5315 (c) b15 (d) b17

0 0.5 1
MR

(a) c6288

0

100

200

Fr
eq

ue
nc

y

0 2 4
MR

(b) c5315

0

50

100

Fr
eq

ue
nc

y

0 2 4
MR

(c) b15

0

100

200

Fr
eq

ue
nc

y

0 2 4
MR

(d) b17

0

50

100

150

Fr
eq

ue
nc

y

Figure 6:Histogramplots of theMR for different benchmark

circuits with 128 key bits: (a) c6288 (b) c5315 (c) b15 (d) b17

Figure 5 shows the histogram plots of SR metrics for four bench-

mark circuits. For benchmark circuit c6288, we estimate majority

of the key bits (Figure 5) as this multiplier consists of many half

and full adders. 126 out of 128 key bits can be predicted success-

fully, which results a minimum SR of 98%. Figure 5.(b) shows the

SR distribution for c5315 circuit. We observe a Gaussian distribu-

tion with a mean (μ) of 87.28% and variance (σ 2) of 6.6680 for this

circuit. Similar behavior is observed for other two benchmark cir-

cuits (Figure 5.(c) and Figure 5.(d)). Note that the overall variance

of the SR distribution is decreased when increasing the size of the

benchmark circuits due to the increase of the EU F search space in

the circuit graph, which makes our proposed TGA more effective

for extracting keys in real designs.

The histogram plots of MR for the same benchmark circuits are

shown in Figure 6. For c6288 benchmark circuit, the key bits can be

predicted correctly with a 0% MR in majority of cases. One key bit

is predicted incorrectly, and thus the maximum value of MR is less

than 1%. As for c5315, we observe an exponential distribution with

a mean (λ−1) of 1.23% and variance (λ−2) of 1.5129 for this circuit.
Similar behavior can be observed for b15 and b17 (Figure 6.(c) and

Figure 6.(d)) benchmark circuits. In general, the mean and variance

are presented by λ−1 and λ−2 for exponential distributions, whereas
they are represented by μ and σ 2 for Gaussian distributions. Based

on the observation, both mean and variance of MR are decreased

with the increase of the size of the benchmark circuits, which makes

TGA more accurate for larger designs.

Table 1 shows the success rate (SR) and misprediction rate (MR)

of the proposed TGA attacks on ISCAS’85 and ITC’99 benchmark

circuits. The number of logic gates and inserted key gates are pre-

sented in Columns 2 and 3, respectively. The total area overhead due

to the inserted number of key gates is constrained to 10% to insert

128 key gates. However, the overhead added by the key gates can

be negligible for larger designs with thousands of gates. Columns 4,

5, and 6 show the minimum, average, and maximum SR values (see

Equation 3) by analyzing 100 locked instances for each benchmark

circuit to determine the accuracy of TGA (see Algorithm 2 for de-

tails). For c7552 benchmark, 128 key gates are inserted randomly in

the netlist with 3512 logic gates. The minimum accuracy of 69.53%

is observed, where the attack predicts 89 out of 128 key value cor-

rectly and the maximum prediction accuracy attained is 88.28%,

where the attack identifies 113 key bits. Similar analysis can be

performed for all the benchmarks shown in each row. For the larger

benchmark circuits, the average success rate SR can be increased

over 90% because of the increased search space, which makes our

proposed TGA efficient for larger designs. Note that, although SAT

fails on benchmark c6288, TGA provides better accuracy (average

of 98.52%) for benchmark c6288 due to its special topology – it is

a multiplier, which consists of 225 full adders and 15 half adders.

Therefore, an adversary can choose TGA as an alternate of SAT

attacks.

The accuracy of the proposed TGA is evaluated as well, as it is

necessary to determine the correctness of estimated SR. The mini-

mum, average, and maximummisprediction rate,MR, are calculated

using Equation 4 and provided at Columns 7, 8, and 9, respectively

of Table 1. We observe an exponential distribution (see Figure 6)

for MR. The average MR is less than 1% for majority of benchmark

circuits, which makes TGA very effective for determining the secret

key. Note that it can reach to a higher value for some benchmark

circuits (e.g., 4.69% for c7552, where 6 key bits are predicted in-

correctly). Our future work will be analyzing higher MR values to

increase the accuracy of TGA.

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

81

Table 1: Success rate (SR) and misprediction rate (MR) for estimating keys for locked benchmark circuits.

Benchmark
Total

Gates

Key

Gates

Success Rate (SR) Misprediction Rate (MR)

Min. Avg. Max. Min. Avg. Max.

c3540 1669 128 75.22% 79.61% 87.50% 0.00% 1.76% 3.12%

c5315 2307 128 81.25% 87.80% 94.53% 0.00% 1.23% 3.91%

c6288 2406 128 98.44% 98.52% 99.22% 0.00% 0.09% 0.08%

c7552 3512 128 69.53% 79.87% 88.28% 0.00% 2.03% 4.69%

b14 3461 128 85.16% 93.38% 97.66% 0.00% 0.52% 3.12%

b15 6931 128 89.85% 95.68% 98.44% 0.00% 0.48% 1.56%

b20 7741 128 92.97% 96.39% 99.22% 0.00% 0.25% 1.56%

b21 7931 128 89.06% 94.62% 98.44% 0.00% 0.35% 1.56%

b22 12128 128 92.97% 95.56% 98.44% 0.00% 0.37% 1.56%

b17 21191 128 92.19% 95.64% 99.22% 0.00% 0.51% 3.12%

5.2 Complexity Analysis

The time complexity of a typical SAT-resistant locking method

is exponential to the size of secret key [43], since it considers all

possible key combinations. However, our proposed TGA does not

require to compare any input and output pairs, and all the inserted

key gates would be analyzed individually. Therefore, the time com-

plexity of TGA itself is simply linear to the key size, namely,O(|K |).

Note that, our attack algorithm is based on UFS, the actual overall

complexity isO(|K | ∗ n ∗u) where n and u represent the size of the

netlist and average size of the unit functions, respectively. Thus

the complexity could be considered as linear for a particular circuit,

since the netlist size is fixed, and the size of UF normally ranges

from 3-10 depending on the key gate location.

Table 2: Attack Effort of TGA

Benchmark
Total

Gates

Approximate Attack Effort (AE)

|K|= 128 |K|= 256 |K|= 512

c3540 1669 218 219 220

c5315 2307 219 220 221

c6288 2406 219 220 221

c7552 3512 219 220 221

b14 3461 219 220 221

b15 6931 220 221 222

b20 7741 220 221 222

b21 7931 220 221 222

b22 12128 221 222 223

b17 21191 222 223 224

Table 2 shows an estimated attack effort (AE) for different bench-
mark circuits. AE is determined by the number of gate search that

an adversary needs to perform. For b17 benchmark, it is required

approximately 222 searches to determine the complete 128 key bits,

whereas, it takes 223 and 224 searches for 256 and 512 key bits,

respectively. Note that the number of searches increases linearly

for a circuit as we expected. For a modern computer, it takes only

few minutes to complete these searches for launching TGA.

6 FUTUREWORK

In the future, we plan to evaluate the effectiveness of our pro-

posed attack on the state-of-the-art SAT-resistant countermeasures

[14, 15, 41, 43, 46, 47]. As many of today’s SAT-resistant techniques

use conventional locking using XORs/MUXes to modify the func-

tionality, determining these keys will collapse the security provided

from SAT-resistant blocks. For example, SARLock [43] and Anti-

SAT [41] use one-point functions to obtain resilience against SAT

attack. Both the techniques are dependent on additional blocks

that protects the original locked netlist by inverting/corrupting the

logic value at internal node or primary output (PO) for incorrect

key value. As both the techniques rely on traditional logic locking

to lock the functionality of the original netlist, which makes them

vulnerable to this proposed attack.

7 CONCLUSION

In this paper, we presented a novel oracle-less and topology guided

attack (TGA) that uses function search to break an existing secure

logic locking technique. The unit functions are generally instan-

tiated multiple times in a netlist. If a key gate is placed in one of

these instances, an adversary can perform a search with the EUF

formed using a hypothesis key bit. If a match is found in the netlist,

the hypothesis key becomes the actual key bit. As this proposed

attack does not require any input/output data from an unlocked

chip, SAT resistant solutions cannot prevent an adversary launch-

ing this attack. The success rate (SR) and misprediction rate (MR)

metrics are proposed to evaluate the effectiveness of this attack.

The simulation results show that we can accurately determine ma-

jority of the secret key bits. Note that the complexity of launching

TGA is linear with the key size, which makes it very effective for

any designs. We also present a solution to prevent TGA, where it

is required to lock all the repeated instances of an UF. Note that

this solution can only be used to prevent TGA. To design a secure

logic locking technique, one needs to select an existing secure logic

locking technique along with our proposed solution. Our future

work is to evaluate the performance of TGA on the state-of-the-art

secure logic locking techniques.

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

82

ACKNOWLEDGMENT

This work was supported by the National Science Foundation under

grant number CNS-1755733.

REFERENCES
[1] Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vas-

silevska Williams, and Or Zamir. 2018. Subtree isomorphism revisited. ACM
Transactions on Algorithms (TALG) 14, 3 (2018), 27.

[2] Yousra Alkabani, Farinaz Koushanfar, and Miodrag Potkonjak. 2007. Remote
activation of ICs for piracy prevention and digital right management. In Proc. of
IEEE/ACM international conference on Computer-aided design. 674–677.

[3] Yousra M. Alkabani and Farinaz Koushanfar. 2007. Active hardware metering
for intellectual property protection and security. In Proc. of USENIX Security
Symposium. 20:1–20:16.

[4] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. 2010. Preventing IC
piracy using reconfigurable logic barriers. IEEE Design & Test of Computers (2010),
66–75.

[5] David Bryan. 1985. The ISCAS’85 benchmark circuits and netlist format. North
Carolina State University 25 (1985).

[6] Encarnación Castillo, Uwe Meyer-Baese, Antonio García, Luis Parrilla, and Anto-
nio Lloris. 2007. IPP@HDL: Efficient Intellectual Property Protection Scheme for
IP Cores. IEEE Trans. Very Large Scale Integr. Syst. (2007), 578–591.

[7] R.S. Chakraborty and S. Bhunia. 2008. Hardware protection and authentication
through netlist level obfuscation. In Proc. of IEEE/ACM International Conference
on Computer-Aided Design. 674 –677.

[8] Rajat Subhra Chakraborty and Swarup Bhunia. 2009. HARPOON: an obfuscation-
based SoC design methodology for hardware protection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2009), 1493–1502.

[9] E. Charbon. 1998. Hierarchical watermarking in IC design. In Custom Integrated
Circuits Conference. 295–298.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to algorithms. MIT press.

[11] Scott Davidson. 2019. https://www.cerc.utexas.edu/itc99-
benchmarks/bench.html.

[12] Peter J Dickinson, Horst Bunke, Arek Dadej, and Miro Kraetzl. 2003. On graphs
with unique node labels. In International Workshop on Graph-Based Representa-
tions in Pattern Recognition. Springer, 13–23.

[13] Ujjwal Guin, Qihang Shi, Domenic Forte, and Mark M Tehranipoor. 2016. FORTIS:
a comprehensive solution for establishing forward trust for protecting IPs and
ICs. ACM Transactions on Design Automation of Electronic Systems (2016).

[14] U. Guin, Ziqi Zhou, and A. Singh. 2017. A novel design-for-security (DFS)
architecture to prevent unauthorized IC overproduction. In Proc. of the IEEE VLSI
Test Symposium (VTS). 1–6.

[15] Ujjwal Guin, Ziqi Zhou, and Adit Singh. 2018. Robust design-for-security archi-
tecture for enabling trust in IC manufacturing and test. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems (2018), 818–830.

[16] Jiawei Huang and J. Lach. 2008. IC activation and user authentication for security-
sensitive systems. In Proc. of IEEE International Workshop on Hardware-Oriented
Security and Trust. 76 –80. https://doi.org/10.1109/HST.2008.4559056

[17] RichardWayne Jarvis and Michael GMcIntyre. 2007. Split manufacturing method
for advanced semiconductor circuits. US Patent 7,195,931.

[18] A.B. Kahng, J. Lach, W.H. Mangione-Smith, S. Mantik, I.L. Markov, M. Potkonjak,
P. Tucker, Huijuan Wang, and G. Wolfe. 2001. Constraint-based watermarking
techniques for design IP protection. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (2001), 1236–1252.

[19] Soroush Khaleghi, Kai Da Zhao, and Wenjing Rao. 2015. IC piracy prevention via
design withholding and entanglement. In The 20th Asia and South Pacific Design
Automation Conference. 821–826.

[20] F Koushanfar and Gang Qu. 2001. Hardware metering. In Proc. IEEE-ACM Design
Automation Conference. 490–493. https://doi.org/10.1109/DAC.2001.156189

[21] Yu-Wei Lee and Nur A Touba. 2015. Improving logic obfuscation via logic cone
analysis. In Latin-American Test Symposium (LATS). 1–6.

[22] Nimisha Limaye, Abhrajit Sengupta, Mohammed Nabeel, and Ozgur Sinanoglu.
2019. Is Robust Design-for-Security Robust Enough? Attack on Locked Circuits
with Restricted Scan Chain Access. arXiv preprint arXiv:1906.07806 (2019).

[23] Bao Liu and Brandon Wang. 2014. Embedded reconfigurable logic for ASIC
design obfuscation against supply chain attacks. In Proceedings of the conference
on Design, Automation & Test in Europe. 243.

[24] Stephen M Plaza and Igor L Markov. 2015. Solving the third-shift problem in
IC piracy with test-aware logic locking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2015), 961–971.

[25] Python-2.7. 2019. https://www.python.org/download/releases/2.7/.
[26] Gang Qu and Miodrag Potkonjak. 2003. Intellectual property protection in VLSI

designs: theory and practice. Springer Science & Business Media.
[27] Md Tauhidur Rahman, Domenic Forte, Quihang Shi, Gustavo K Contreras, and

Mohammad Tehranipoor. 2014. CSST: an efficient secure split-test for preventing
IC piracy. In IEEE North Atlantic Test Workshop. 43–47.

[28] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. 2012. Security analysis of logic
obfuscation. In Proc. of ACM/IEEE on Design Automation Conference. 83–89.

[29] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok Pino,
Ozgur Sinanoglu, and Ramesh Karri. 2015. Fault analysis-based logic encryption.
IEEE Transactions on Computers (2015), 410–424.

[30] Alfred J Reich, Kent H Nakagawa, and Robert E Boone. 2003. OASIS vs. GDSII
stream format efficiency. In 23rd Annual BACUS Symposium on Photomask Tech-
nology, Vol. 5256. 163–174.

[31] J.A. Roy, F. Koushanfar, and I.L. Markov. 2008. EPIC: Ending Piracy of Integrated
Circuits. In Proc. on Design, Automation and Test in Europe. 1069 –1074. https:
//doi.org/10.1109/DATE.2008.4484823

[32] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.
2017. AppSAT: Approximately deobfuscating integrated circuits. In Int. Symp. on
Hardware Oriented Security and Trust. 95–100.

[33] Yuanqi Shen and Hai Zhou. 2017. Double DIP: Re-Evaluating Security of Logic
Encryption Algorithms. In Proceedings of the on Great Lakes Symposium on VLSI.
179–184.

[34] Deepak Sirone and Pramod Subramanyan. 2019. Functional Analysis Attacks on
Logic Locking. in Proc. DATE (2019).

[35] P. Subramanyan, S. Ray, and S. Malik. 2015. Evaluating the security of logic
encryption algorithms. In Int. Symp. on Hardware Oriented Security and Trust.
137–143.

[36] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing (1972), 146–160.

[37] Mohammad Tehranipoor and Cliff Wang. 2012. Introduction to Hardware Security
and Trust. Springer.

[38] Mark (Mohammad) Tehranipoor, Ujjwal Guin, and Domenic Forte. 2015. Coun-
terfeit Integrated Circuits: Detection and Avoidance. Springer.

[39] Randy Torrance and Dick James. 2009. The state-of-the-art in IC reverse engi-
neering. In International Workshop on Cryptographic Hardware and Embedded
Systems. 363–381.

[40] Kaushik Vaidyanathan, Renzhi Liu, Ekin Sumbul, Qiuling Zhu, Franz Franchetti,
and Larry Pileggi. 2014. Efficient and secure intellectual property (IP) design with
split fabrication. In Int. Symp. on Hardware Oriented Security and Trust. 13–18.

[41] Yang Xie and Ankur Srivastava. 2016. Mitigating sat attack on logic locking. In
Int. Conf. on Cryptographic Hardware and Embedded Sys. 127–146.

[42] Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. 2017. Novel
Bypass Attack and BDD-based Tradeoff Analysis Against all Known Logic Lock-
ing Attacks. International Conference on Cryptographic Hardware and Embedded
Systems (CHES) (2017).

[43] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and Ozgur
Sinanoglu. 2016. SARLock: SAT attack resistant logic locking. In Int. Symp. on
Hardware Oriented Security and Trust. 236–241.

[44] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. 2017. Removal attacks on logic locking and camouflaging techniques.
IEEE Transactions on Emerging Topics in Computing (2017).

[45] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. 2017. Security analysis of anti-sat. In Asia and South Pacific Design
Automation Conference (ASP-DAC). 342–347.

[46] Muhammad Yasin, Abhrajit Sengupta, M Ashraf, M Nabeel, J Rajendran, and
Ozgur Sinanoglu. 2017. Provably-Secure Logic Locking: From Theory To Practice.
In ACM/SIGSAC Conference on Computer & Communications Security. 1–1.

[47] M. Yasin, A. Sengupta, B.C. Schafer, Y. Makris, O. Sinanoglu, and J. Rajendran.
2017. What to lock?: Functional and parametric locking. In Proc. of the on Great
Lakes Symposium on VLSI. 351–356.

Full Paper ASHES ’19, November 15, 2019, London, United Kingdom

83

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 1.08 points
 Normalise (advanced option): 'original'

 32

 D:20190930150936
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 474
 343

 Fixed
 Up
 1.0800
 0.0000

 Both
 2
 AllDoc
 2

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 9
 8
 9

 1

 HistoryList_V1
 qi2base

