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Q) You are tasked with developing a Python code for sentiment extraction utilizing a 

provided sample dataset. The dataset consists of textual data annotated with 

labels categorizing sentiments into four categories: "rude," "normal," "insult," and 

"sarcasm." Dataset: 

● Real News: 

https://drive.google.com/file/d/1FL2HqgLDAP5550nd1h_8iBhAV 

ISTnzr/view?usp=sharing 

● Fake News: 

https://drive.google.com/file/d/1EdI_HyUeI_Fi2nld7rQnnGEpQqn_BwM 

/view? usp=sharing 

1. Outline the key steps involved in developing a sentiment extraction 

Algorithm using Python. 

2. Describe the structure and format of the sample dataset required for 

Sentiment extraction. 

3. Implement the Python code to read and pre-process the sample dataset for 

Sentiment analysis. Ensure that the code correctly handles text data and Labels. 

4. Discuss the process of classifying sentiments into the specified categories: "Rude," 

"normal," "insult," and "sarcasm." Explain any techniques or Algorithms employed for 

this classification task. 

5. Evaluate the effectiveness of the sentiment extraction algorithm on the Provided 

sample dataset. Consider metrics such as accuracy, precision, Recall, and F1-score. 

6. Propose potential enhancements or modifications to improve the 

Performance of the sentiment extraction algorithm. Justify your 

Recommendations. 

7. Reflect on the ethical considerations associated with sentiment analysis, 
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Particularly regarding privacy, bias, and potential misuse of extracted Sentiments. 

8. Write a complete code for this assignment. 

Developing a sentiment extraction algorithm using Python involves several key steps. 

Certainly! Let me rephrase the provided text for you: 

 

1. Data Collection: 

o Obtain a dataset with labeled sentiment data. This dataset should include various 

text samples (such as reviews, tweets, or news articles) along with corresponding 

sentiment labels (positive, negative, or neutral). 

2. Data Preprocessing: 

o Clean and preprocess the text data:  

▪ Remove punctuation marks. 

▪ Convert text to lowercase. 

▪ Eliminate stopwords (common words like “the,” “and,” etc.). 

▪ Handle any other necessary text transformations. 

3. Feature Extraction: 

o Convert preprocessed text data into numerical feature vectors:  

▪ Techniques include:  

▪ Bag-of-Words: Represent each document as a vector of word 

frequencies. 

▪ TF-IDF (Term Frequency-Inverse Document Frequency): 

Reflects the importance of words in a document relative to the 

entire dataset. 

▪ Word Embeddings (e.g., Word2Vec, GloVe): Dense vector 

representations of words. 

4. Model Selection: 

o Choose an appropriate machine learning algorithm for sentiment analysis:  

▪ Options include:  

▪ Logistic Regression: Simple and interpretable. 

▪ Naive Bayes: Effective for text classification. 

▪ Support Vector Machines (SVM): Good for linear separation. 

▪ Deep Learning Models (RNN, CNN): Capture complex patterns. 

5. Model Training: 

o Split your dataset into training and testing sets:  

▪ Train the model using the training set:  

▪ Fit it to the feature vectors and corresponding sentiment labels. 

6. Model Evaluation: 

o Assess the performance of your sentiment extraction model:  

▪ Common evaluation metrics:  

▪ Accuracy: Overall correctness. 

▪ Precision: Proportion of true positives among predicted positives. 

▪ Recall: Proportion of true positives among actual positives. 

▪ F1-score: Harmonic mean of precision and recall. 

7. Fine-tuning and Optimization: 

o Iterate on your model:  

▪ Fine-tune hyperparameters (e.g., learning rate, regularization strength). 

▪ Explore different feature extraction techniques or model architectures. 

▪ Experiment with data augmentation or ensemble methods. 



Assignment-16 
Lohendra P 

2406CYS124 
 

8. Deployment: 

o Once satisfied with performance, deploy the sentiment extraction algorithm:  

▪ Create APIs or integrate it into a larger application for real-world use. 

The structure and format of a sample dataset required for sentiment extraction can vary, 

but it typically consists of two main components: 

1. Text Data: The dataset should include a collection of text samples or documents on 

which sentiment analysis will be performed. Each text sample represents a piece of content 

(such as reviews, tweets, comments, or product descriptions) that expresses opinions or 

sentiments.
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Sentiment Labels: Along with the text data, the dataset should also include sentiment labels 

associated with each text sample. These labels indicate the sentiment expressed in the 

corresponding text, such as positive, negative, or neutral. Sometimes, sentiment labels are 

represented as numerical values (e.g., 0 for negative, 1 for neutral, and 2 for positive). 

Here is an example of how the dataset might be organized in a tabular format: 
 

 
| Text Data | Sentiment Label | 

| | | 

| I loved the movie! | Positive | 

| This book is boring.| Negative | 

| The product is okay.| Neutral | 

| Fantastic experience| Positive | 

| Disappointed with the service | Negative | 
 

 
In this sample dataset, each row represents a text sample, and the corresponding 

sentiment label indicates the sentiment expressed in the text. This structure allows the 

sentiment extraction algorithm to learn patterns and make predictions based on the text 

and sentiment relationship. 

It's worth noting that datasets for sentiment extraction can vary in size, domain, and 

annotation quality. It is essential to ensure that the dataset is representative and 

sufficiently labeled to train an effective sentiment extraction algorithm. 

import pandas as pd import 

re 

import nltk 

from nltk.corpus import stopwords 

from sklearn.model_selection import train_test_split 
 

 
# Read the dataset into a pandas DataFrame 

df = pd.read_csv('sample_dataset.csv') # Replace 'sample_dataset.csv' with the actual file 

name 

 

 
# Preprocessing steps def 

preprocess_text(text): 
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# Remove special characters and numbers text = 

re.sub('[^a-zA-Z]', ' ', text) 

 

# Convert text to lowercase text = 

text.lower() 

 

# Tokenize the text 

tokens = nltk.word_tokenize(text) 
 

 
# Remove stopwords 

stop_words = set(stopwords.words('english')) 

tokens = [token for token in tokens if token not in stop_words] 
 

 
# Join the tokens back into a single string 

preprocessed_text = ' '.join(tokens) 

 

return preprocessed_text 
 

 
# Preprocess the text data 

df['preprocessed_text'] = df['text'].apply(preprocess_text) 
 

# Split the data into train and test sets train_data, 

test_data, train_labels, test_labels = 

train_test_split(df['preprocessed_text'], df['label'], test_size=0.2, random_state=42) 

 
 

# Further processing or model training can be performed on the preprocessed data 

 

 
Classifying Sentiment: Rude, Normal, Insult, and Sarcasm 
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Sentiment analysis, also known as opinion mining, aims to understand the emotional tone 
behind text data. Classifying sentiment into specific categories like "rude," "normal," "insult," 
and "sarcasm" can be challenging due to the nuances of human language. Here's a 
breakdown of the process and techniques used: 

 
1. Data Preprocessing: 

 
• Text Cleaning: Removing noise like punctuation, stop words (common words like 

"the" or "a"), and converting text to lowercase is essential. 
• Lemmatization/Stemming: Reducing words to their base form (e.g., 

"running" becomes "run") improves consistency. 
 

2. Feature Engineering: 
 

• Lexicon-based Approach: Words are assigned sentiment scores based on pre-built 
sentiment lexicons (lists of words with positive, negative, or neutral sentiment). 

• N-grams: Analyzing sequences of words (bigrams, trigrams) can capture 
context. "Great job" is positive, but "big mistake" is negative. 

 
3. Machine Learning Models: 

 
• Supervised Learning: 

o Training data with labeled examples (e.g., a sentence marked as "rude") is 
fed to models like Support Vector Machines (SVMs) or Naive Bayes. 

o The model learns to identify patterns associated with each sentiment 
category. 

• Deep Learning: Advanced techniques like Recurrent Neural Networks (RNNs) 
and Long Short-Term Memory (LSTM) networks can analyze the sequence of 
words and context more effectively, especially for sarcasm detection. 

 
Challenges of Classifying Specific Categories: 

 
• Subjectivity: "Rude" can be subjective. "That was a bold choice" might be rude 

depending on context. 
• Sarcasm: Identifying sarcasm requires understanding the context and often relies 

on nonverbal cues like tone of voice, which text lacks. 
o Techniques like identifying inconsistencies between the literal meaning and 

the sentiment expressed, or the use of exclamation points (!) and question 
marks (?) can help. 

 
Additional Techniques: 

 
• Emojis and Sentiment Analysis: Emojis can convey strong sentiment. 

Sentiment lexicons can be expanded to include emojis with positive or 
negative connotations. 

• Hybrid Approaches: Combining lexicon-based methods with machine 
learning can improve accuracy. 
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Overall, sentiment classification is an evolving field. While models can achieve good 
accuracy for basic sentiment (positive, negative, neutral), identifying nuances like rudeness 
and sarcasm requires ongoing development and consideration of context. 

 
Evaluating Sentiment Extraction Algorithm with "Rude," "Normal," "Insult," and 
"Sarcasm" Labels 

 
Here's how to evaluate the effectiveness of the sentiment extraction algorithm on your 
dataset: 

 
Metrics: 

 
• Accuracy: Overall percentage of correctly classified samples across all 

categories ("rude," "normal," "insult," and "sarcasm"). 
• Precision: For each sentiment category, the proportion of samples the 

algorithm classified as that category that actually belong to that category 
(avoiding false positives). 

• Recall: For each sentiment category, the proportion of samples that actually 
belong to that category that the algorithm correctly classified (avoiding false 
negatives). 

• F1-score: Harmonic mean of precision and recall, combining both metrics into a 
single score. 

 
Evaluation Process: 

 
1. Split the dataset: Divide your data into a training set (used to train the 

algorithm) and a testing set (used to evaluate its performance). 
2. Train the model: Train your sentiment extraction algorithm on the training set. 
3. Evaluate on the testing set: Make predictions on the testing set using the trained 

model. 
4. Calculate evaluation metrics: Using the ground truth labels (actual sentiment) and 

the model's predictions on the testing set, calculate accuracy, precision, recall, and 
F1-score for each category ("rude," "normal," "insult," and "sarcasm"). 

 
Challenges: 

 
• Balanced Dataset: The effectiveness of these metrics depends on a balanced 

dataset. If most data belongs to the "normal" category, the model might achieve 
high overall accuracy but struggle with less frequent categories like "insult" or 
"sarcasm." Analyze precision and recall for each category to identify potential 
weaknesses. 

• Class Imbalance Techniques: If the dataset is imbalanced, consider using 
techniques like oversampling (replicating data from the minority class) or under 
sampling (removing data from the majority class) to create a more balanced 
training set. 
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Interpretation: 
 

• A high accuracy score indicates the model performs well overall. 
• High precision for a category like "insult" means the model rarely misclassifies other 

types of text as insults (reducing false positives). 
• High recall for "sarcasm" means the model identifies most sarcastic 

comments (reducing false negatives). 
• F1-score provides a balanced view of precision and recall. 

 
Additional Considerations: 

 
• Error Analysis: Analyse the types of errors the model makes to understand its 

weaknesses. Are there specific types of sarcasm it struggles with? Does it 
misclassify neutral comments as rude? 

• Visualization Techniques: Consider using confusion matrices to visualize how the 
model performed on each category classification. 

 
By evaluating sentiment extraction algorithm using these metrics and considering the 
challenges, you can gain valuable insights into its effectiveness for classifying "rude," 
"normal," "insult," and "sarcasm" sentiments in your specific dataset. 

 
To improve the performance of the sentiment extraction algorithm, we can consider the 
following potential enhancements or modifications: 

 
1. Integration of Domain-specific Language Models: 
Incorporating domain-specific language models such as specialized sentiment lexicons or 
dictionaries can enhance the algorithm's understanding of industry- specific language 
nuances and sentiment expressions. By integrating domain- specific knowledge, the 
algorithm can more accurately classify sentiments within the context of the target domain. 

 
2. Fine-tuning Pretrained Language Models: 
Fine-tuning pretrained language models like BERT, RoBERTa, or ALBERT on domain-specific 
datasets can improve the algorithm's performance by adapting to the specific sentiment 
patterns and vocabulary of the target domain. Fine-tuning allows the model to capture 
domain-specific sentiment nuances and context, leading to more accurate sentiment 
extraction. 

 
3. Data Augmentation Techniques: 
Augmenting the training data through techniques like back translation, synonym 
replacement, or data synthesis can increase the diversity and quantity of training examples. 
By exposing the algorithm to a wider range of sentiment expressions, data augmentation 
can improve the model's ability to generalize and accurately classify sentiments in real-
world text. 

 
4. Ensemble Learning: 
Implementing ensemble learning techniques such as bagging, boosting, or model stacking can 
enhance the robustness and generalization capability of the sentiment extraction algorithm. 
By combining multiple sentiment classifiers or models, 
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ensemble methods can mitigate individual model biases and errors, leading to improved 
sentiment classification performance. 

 
5. Attention Mechanisms: 
Leveraging attention mechanisms in neural network architectures can allow the 
algorithm to focus on critical words or phrases that contribute most to sentiment 
classification decisions. Attention mechanisms help the model capture important 
sentiment-bearing tokens and dependencies, improving the interpretability and 
performance of sentiment extraction. 

 
6. Multi-task Learning: 
Employing multi-task learning by training the sentiment extraction model on related tasks 
such as sentiment intensity prediction or aspect-based sentiment analysis can lead to a 
more holistic understanding of text sentiment. By jointly optimizing multiple sentiment-
related objectives, the algorithm can capture nuanced sentiment information and improve 
overall sentiment classification accuracy. 

 
7. Active Learning: 
Implementing active learning strategies to iteratively select and label the most informative 
data points can enhance the efficiency and effectiveness of sentiment extraction model 
training. By prioritizing the annotation of crucial data samples, active learning can facilitate 
the algorithm's learning process and improve sentiment classification performance with 
limited labeled data. 

 
By incorporating these enhancements and modifications, we can enhance the sentiment 
extraction algorithm's performance by leveraging domain-specific knowledge, fine-tuning 
models, augmenting data, utilizing ensemble methods, attention mechanisms, multi-task 
learning, and active learning techniques. These strategies can collectively improve the 
algorithm's accuracy, robustness, and generalization capability in sentiment analysis tasks. 

 
Sentiment analysis, like any other AI technology, raises important ethical considerations 

that need to be carefully addressed. Let's reflect on the key ethical considerations 

associated with sentiment analysis: 

1. Privacy: Sentiment analysis often requires access to large amounts of personal data, 

which can include sensitive information. It is crucial to respect individuals' privacy rights by 

obtaining informed consent, anonymizing data, and ensuring secure storage and 

transmission of data. Transparent privacy policies and adherence to data protection 

regulations are imperative to maintain trust. 

 
 

2. Bias: Bias in sentiment analysis can arise from various sources, such as biased training 

data, algorithmic design, or societal prejudices. Biased sentiment analysis systems may 

perpetuate discrimination, reinforce stereotypes, or produce unfair outcomes. Regular 

auditing and diverse representation in the development of sentiment analysis models can 

help mitigate bias and ensure more equitable results. 



Assignment-16 
Lohendra P 

2406CYS124 
 

Coding part for the given files: 

 
 
1)pip install nltk scikit-learn pandas pip install nltk scikit-learn pandas 

# Import all the Libraries 

import nltk 

 
import pandas as pd 

 
from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.svm import SVC 

from sklearn.metrics import classification_report 

 
nltk.download("punkt") ##Fucntion: Smilies 

nltk.download("stopwords") ##Function: Build Customed Stopwords:: Specific 

to Domain 

3. Data source representation: Sentiment analysis models heavily rely on training data. If 

the training data is unrepresentative or lacks diversity, the model may fail to capture 

sentiments from different demographic groups, cultural backgrounds, or languages. 

Efforts should focus on collecting diverse and inclusive datasets that accurately represent 

the intended user base. 

 
 

4. Transparency and explainability: The opacity of sentiment analysis algorithms can lead 

to concerns about accountability and fairness. Organizations should strive for transparency 

in disclosing the methodology, training data sources, and limitations of sentiment analysis 

systems. Providing explanations for the sentiment predictions can help users understand 

and evaluate the validity of the results. 

 
 

5. Misuse of extracted sentiments: Sentiment analysis can have unintended consequences 

if the extracted sentiments are misused. It is essential to use sentiment analysis responsibly 

and ethically, respecting the privacy and well-being of individuals. Safeguards should be in 

place to prevent the misuse of sentiment analysis for purposes such as manipulating public 

opinion, fueling discrimination, or infringing on people's rights. 

Addressing these ethical considerations requires collaborative efforts between developers, 

researchers, policymakers, and the wider community. Striving for transparency, fairness, 

inclusivity, and ongoing monitoring of sentiment analysis systems can help mitigate 

potential ethical risks and ensure that sentiment analysis is used in a responsible and 

beneficial manner. 
 



Assignment-16 
Lohendra P 

2406CYS124 
 

 

date 

 
December 

31, 2017 
 

December 
31, 2017 

 

December 
30, 2017 

 

December 
29, 2017 

 

December 
25, 2017 

 
 
 

 
23476 

 
 

23477 
 
 

23478 

 

 
McPain: John McCain 

Furious That Iran 
Treated ... 

 

JUSTICE? Yahoo 
Settles E-mail Privacy 

Class-ac... 
 

Sunnistan: US and 
Allied ‘Safe Zone’ 

Plan to T... 

 

 
21st Century Wire says As 

21WIRE reported 
earl... 

 
21st Century Wire says It 

s a familiar theme. ... 

 
Patrick Henningsen 

21st Century 
WireRemember ... 

 

 
Middle- 

east 
 

Middle- 
east 

 

Middle- 
east 

... 

 
January 16, 

2016 
 

January 16, 
2016 

 

January 15, 
2016 

 
from google.colab import drive 

 
 
drive.mount("/content/drive", force_remount=True) 

 
file_path="/content/drive"+"/My Drive/"+ "JNTUSessions/Fake.csv" 

data = pd.read_csv(file_path) 

data.head() 

 
df = pd.DataFrame(data) ## etl():: AWS, Facebook, X, GCP 

df 

 title text subject 

 
0 

Donald Trump Sends 
Out Embarrassing 

Donald Trump just 
couldn t wish all 

 
News 

 New Year’... Americans ...  

 
1 

Drunk Bragging 
Trump Staffer Started 

House Intelligence 
Committee Chairman 

 
News 

 Russian ... Devin Nu...  

 
2 

Sheriff David Clarke 
Becomes An Internet 

On Friday, it was 
revealed that former 

 
News 

 Joke... Milwauk...  

 
3 

Trump Is So 
Obsessed He Even 

On Christmas day, 
Donald Trump 

 
News 

 Has Obama’s Name... announced that ...  

 
4 

Pope Francis Just 
Called Out Donald 

Pope Francis used his 
annual Christmas Day 

 
News 

 Trump Dur... mes...  

... ... ... ... 
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subject date 

 
 
 
 
 
 
 
 

23481 rows × 4 columns 

Middle- 
east 

 

Middle- 
east 

January 14, 
2016 

 

January 12, 
2016 

 

 
svm_classifier = SVC(kernel='linear') ## Non-Linear, ReLu, Leaky ReLu, 
Logistic 

svm_classifier.fit(X, df['label']) 
 

 
predictions = svm_classifier.predict(X) predictions 

 
 
stopwords = set(nltk.corpus.stopwords.words('english')) ## Translator APIs- 

>Oxform NLP, Google Translator API 

stemmer = nltk.stem.PorterStemmer() 

 
 

def preprocess_text(text): 

tokens = nltk.word_tokenize(text.lower()) 

tokens = [stemmer.stem(token) for token in tokens if token.isalnum() and 

token not in stopwords] 

return ' '.join(tokens) 

 

df['processed_text'] = df['text'].apply(preprocess_text) 

tfidf_vectorizer = TfidfVectorizer() 

X = tfidf_vectorizer.fit_transform(df['processed_text']) 

X 

 
 

svm_classifier = SVC(kernel='linear') ## Non-Linear, ReLu, Leaky ReLu, 

Logistic 

svm_classifier.fit(X, df['label']) 

 
predictions = svm_classifier.predict(X) 

predictions 

 
df['predicted_level']=predictions 

 title text 

 
23479 

How to Blow $700 
Million: Al Jazeera 

21st Century Wire says 
Al Jazeera America 

 America F... will... 

 
23480 

10 U.S. Navy Sailors 
Held by Iranian 

21st Century Wire says 
As 21WIRE predicted 

 Military ... in ... 
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file_path = "/content/drive" + "/My Drive/" + "JNTUSessions/" 

file_path = "/content/drive/My Drive/JNTUSessions/" 

df_fake = pd.read_csv(file_path + "Fake.csv") 

file_path = "/content/drive/My Drive/JNTUSessions/" 

df_true = pd.read_csv(file_path + "True .csv") 

df_fake.head() 

df['predicted_level']=predictions 

2)import pandas as pd import 

numpy as np 
import matplotlib.pyplot as plt 
from sklearn.preprocessing import LabelEncoder from keras 

import Sequential 
from keras.layers import Embedding, Dense, LSTM from 

keras.preprocessing.text import one_hot from keras.utils 

import pad_sequences 
 

import nltk 

from nltk.stem.snowball import SnowballStemmer import 

regex as re 
from nltk.tokenize import sent_tokenize 

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report 

from sklearn.model_selection import train_test_split import 

warnings 
 

warnings.filterwarnings('ignore') from 

nltk.corpus import stopwords 
 

nltk.download('stopwords') 

nltk.download('punkt') 

nltk.download('wordnet') 
stop_words = stopwords.words('english') 

 

[nltk_data] Downloading package stopwords to /root/nltk_data... 
[nltk_data] Unzipping corpora/stopwords.zip. 
[nltk_data] Downloading package punkt to /root/nltk_data... 
[nltk_data] Unzipping tokenizers/punkt.zip. 
[nltk_data] Downloading package wordnet to /root/nltk_data... 
addCode 
addText 

 
Mounted at /content/drive 

 

from google.colab import drive 

drive.mount("/content/drive", force_remount=True) 

drive.mount("/content/drive", force_remount=True) 
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df_true.head() 

df_fake['status']=1 

df_true['status']=0 

df=pd.concat([df_true,df_fake]) 

df.drop(['subject', 'text', 'date'], axis=1, inplace=True) 

def logest_sentence_length(text): 
return len(text.split()) 

 
ramdom_idexes=np.random.randint(0, len(df), len(df)) 

df = df.iloc[ramdom_idexes].reset_index(drop=True) 

 
pd.set_option('display.max_colwidth', 500) 

random = np.random.randint(0, len(df), 20) 

df.iloc[random] 

 
df.isnull().sum() 

 
title text subject date 

0 Donald Trump Sends Out Embarrassing New Year’... Donald Trump just couldn 

t wish all Americans ... News December 31, 2017 

1 Drunk Bragging Trump Staffer Started Russian ... House Intelligence 

Committee Chairman Devin Nu... News December 31, 2017 

2 Sheriff David Clarke Becomes An Internet Joke... On Friday, it was 

revealed that former Milwauk... News December 30, 2017 

3 Trump Is So Obsessed He Even Has Obama’s Name... On Christmas 

day, Donald Trump announced that ... News December 29, 2017 

4 Pope Francis Just Called Out Donald Trump Dur... Pope Francis used his 

annual Christmas Day mes... News December 25, 2017 
 

title text subject date 

0 As U.S. budget fight looms, Republicans flip t... WASHINGTON (Reuters) - The 

head of a conservat... politicsNews December 31, 2017 

1 U.S. military to accept transgender recruits o... WASHINGTON (Reuters) - 

Transgender people will... politicsNews December 29, 2017 

2 Senior U.S. Republican senator: 'Let Mr. Muell... WASHINGTON 

(Reuters) - The special counsel inv... politicsNews December 31, 2017 

3 FBI Russia probe helped by Australian diplomat... WASHINGTON 

(Reuters) - Trump campaign adviser ... politicsNews December 30, 2017 

4 Trump wants Postal Service to charge 'much mor... SEATTLE/WASHINGTON 

(Reuters) - President Donal... politicsNews 

December 29, 2017 
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df['maximum_length']=df['title'].apply(lambda x: logest_sentence_length(x)) max_length 

= max(df['maximum_length'].values) 

max_length 
 

text_cleaning = "\b0\S*|\b[^A-Za-z0-9]+" 
 

def preprocess_filter(text, stem=False): 

text = re.sub(text_cleaning, " ", str(text.lower()).strip()) tokens = [] 

for token in text.split(): 

if token not in stop_words: 

if stem: 

stemmer = SnowballStemmer(language='english') token 
= stemmer.stem(token) tokens.append(token) 

return " ".join(tokens) 
 

def one_hot_encoded (text, vocab_size=5000, max_length=40): hot_encodeded = 

one_hot(text, vocab_size) 

return hot_encodeded 
 

def word_embedding(text): 

preprocessed_text=preprocess_filter(text) 

hot_encoded=one_hot_encoded(preprocessed_text) return 

hot_encoded 
 

embedded_features = 40 
model = Sequential() 

model.add(Embedding(5000,embedded_features,input_length=max_length)) 
model.add(LSTM(100)) 

model.add(Dense(1,activation='sigmoid')) 

model.compile(loss = 'binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
 

model.summary() 
 

Model: "sequential" 
 
 
 

Layer (type) Output Shape Param # 

================================================================ 

= 

embedding (Embedding) (None, 42, 40) 200000 
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lstm (LSTM) (None, 100) 56400 

 
dense (Dense) 

 
(None, 1) 

 
101 

 

 

================================================================ 

= 

Total params: 256501 (1001.96 KB) 

Trainable params: 256501 (1001.96 KB) 

Non-trainable params: 0 (0.00 Byte) 
 
 
 

[36] 

5m 

one_hot_encoded_title=df['title'].apply(lambda x : word_embedding(x)).values 

padded_encoded_title = pad_sequences(one_hot_encoded_title, 

maxlen=max_length,padding = "pre") 

X = padded_encoded_title Y = 

df['status'].values 

Y = np.array(Y) 
 

 
X.shape 

 
 
 

Y.shape 
 

 
X_train, X_test, Y_train, Y_test=train_test_split(X, Y, random_state=42) 

 

 
model.fit(X_train,Y_train,validation_data=(X_test, Y_test), epochs=5, batch_size=64) 

 
 

def best_threshold_value(thresholds:list, X_test): accuracies 

= [] 
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for thresh in thresholds: ypred=model.predict(X_test) 

ypred = np.where(ypred > thresh,1,0) 

accuracies.append(accuracy_score(Y_test, ypred)) return 

pd.DataFrame({ 

'Threshold' : thresholds, 

'Accuracy' : accuracies 

}) 
 
 
 

best_threshold_value([0.4, 0.5, 0.6, 0.7, 0.8, 0.9], X_test) 
 
 
 

Y_pred=model.predict(X_test) 

Y_pred=np.where(Y_pred > 0.5, 1, 0) 

 
 
 
 

confusion_matrix(Y_pred, Y_test) 
 

 
classification_report(Y_pred, Y_test) 

Epoch 1/5 
527/527 [==============================] - 50s 89ms/step - loss: 0.2088 - 
accuracy: 0.9156 - val_loss: 0.1258 - val_accuracy: 0.9521 Epoch 2/5 
527/527 [==============================] - 42s 79ms/step - loss: 0.0831 - 
accuracy: 0.9696 - val_loss: 0.1130 - val_accuracy: 0.9604 Epoch 3/5 
527/527 [==============================] - 42s 80ms/step - loss: 0.0483 - 
accuracy: 0.9836 - val_loss: 0.1121 - val_accuracy: 0.9620 Epoch 4/5 
527/527 [==============================] - 43s 81ms/step - loss: 0.0282 - 
accuracy: 0.9909 - val_loss: 0.1317 - val_accuracy: 0.9653 Epoch 5/5 
527/527 [==============================] - 41s 77ms/step - loss: 0.0190 - 
accuracy: 0.9938 - val_loss: 0.1448 - val_accuracy: 0.9662 
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def prediction_input_processing(text): 

encoded=word_embedding(text) 

padded_encoded_title=pad_sequences([encoded], maxlen=max_length, 

padding='pre') 

output=model.predict(padded_encoded_title) 
output=np.where(0.5>output,1,0) 

if output[0][0] == 1: 

return 'The News is Fake' 

return 'The News is True' 

 
news_str1="Americans are more concerned over Indian fake open source 

contributions" 

news_str2="Trump Just Sent Michelle Obama a Bill She will Never Be able to 

pay in her lifetime" 

news_str3="Donald Trump Sends Out Embarrassing New Year’s Eve Message" 

prediction_input_processing(news_str3) 

351/351 [==============================] - 6s 15ms/step 
351/351 [==============================] - 5s 13ms/step 
351/351 [==============================] - 5s 15ms/step 
351/351 [==============================] - 4s 12ms/step 
351/351 [==============================] - 5s 13ms/step 
351/351 [==============================] - 5s 15ms/step 
351/351 [==============================] - 5s 13ms/step ' 

precision recall f1-score  support\n\n 0 0.97 0.96 0.96 
5403\n 1 0.97 0.97 0.97 5822\n\n accuracy 0.9 
7 11225\n  macro avg 0.97 0.97 0.97 11225\nweighted avg 0.97 
0.97 0.97 11225\n    

 
 
 
 
 
 
 
 

 

1/1 [==============================] - 0s 51ms/step ' 
The News is True 


