

Name: Lakshmi Bhargavi Nukala

Email: bhargavi.aqua04@gmail.com

Reg No: 222037

Hall Ticket No: 22063CDO117

GIT:

Task-1
Add a new file with your name in IntelliJ

Add and Commit it to master branch

mailto:bhargavi.aqua04@gmail.com

GIT Task-2:

Created two branches in GIT

bhargavi-dummy

bhargavi-release

In IntelliJ, check out the code from the branches using GIT Fetch and GIT Pull options.

Change the file File-LakshmiBhargaviNukala.txt in bhargavi-release branch, commit and push.

Now switch the branch to bhargavi-dummy and without pulling the code, change the same file and

commit and push.

Create a Pull Request (PR) from bhargavi-dummy branch to bhargavi-release branch.

A merge request to reslove conflicts is displayed.

Resolve conflicts and commit merge

Merge Conflicts are resolved.

Java Task 1:

Run a simple Java application that prints our name

Task-2:

Byte code is in the .class file created and captured it

//

// Source code recreated from a .class file by IntelliJ IDEA
// (powered by FernFlower decompiler)

//
package org;

public class FirstJavaClass {
 public FirstJavaClass() {

 }
 public static void main(String[] args) {

 System.out.println("Hello World!!!My name is Lakshmi Bhargavi Nukala");
 }
}

Maven:

Create a maven project with artifact id as your name and generate jar/war file

In pom.xml file, change the artifact-id to your name and run the command

mvn clean install

<groupId>org.springframework</groupId>
<artifactId>lakshni-bhargavi-nukala</artifactId>

<packaging>jar</packaging>
<version>0.1.0</version>

Gradle:

Create a gradle project with artifact-id as your name and generate jar/war artifact.

In build.gradle file, change the artifact-id name

// tag::jar[]

jar {
 archiveBaseName = 'lakshmi-bhargavi-nukala'

 archiveVersion = '0.1.0'

}
// end::jar[]

Build gradle project using the command

gradle build

SpringBoot microservices:

Task 1: Run the SpringBoot in the repo provided

Task 2: Verify the following Urls on Postman

http://localhost:8089/Employee/welcome

http://localhost:8089/Employee/welcome

http://localhost:8089/Employee/getAllEmployees

http://localhost:8089/Employee/getEmployeeDetails -- POST method , passed empid=13 in body

http://localhost:8089/Employee/getAllEmployees
http://localhost:8089/Employee/getEmployeeDetails

Task 3: Run any test-cases

Jenkins project:

Task 1:

In jenkins create 3 free style projects,

free-style-demo1

free-style-demo2

free-style-demo3

Once free-style-1 is built then free-style-demo2 and later free-style-demo3 should build.

Task 2:

Create a new repo in your login and checkin the maven project.

Configure a Maven project from GIT in Jenkins. Configure credentials of Git as username=GIT

username and password=GIT token, ID is some random name.

Select Github hook trigger option under Build Triggers

Download ngrok from https://ngrok.com/download

Extract to a folder.

From the cmd, go to the extracted folder and run the command
ngrok http 8080

Copy the Forwarding entry in Command Prompt

https://ngrok.com/download

In Git Hub Maven project, under Settings tab ->Click on WebHook and add a new WebHook.

Payload URL => URL copied from ngrok/github-webhook

A new WebHook is added

Make a change in the project and commit and push the changes to the repo

If we check in the GitHub WebHooks, a new entry for the push can be seen.

And at the same time, we can see that a new build is triggered in Jenkins.

Lambda:

Task -1: Create a Lambda function that prints your name.

Add a line printing your name in the code. Then Deploy the code.

Now click on Test to configure a test event.

Then Click on Test to run the event and print your name.

Task-2:

Create an IAM user BhargaviNukala in AWS and give full access to Lambda permission to this user.

Also give additional permissions for SQS and SNS in Permissions tab

Check out the project terraform-examples into IngtelliJ and set accesskey and secret access code of

your AWS IAM user in providers.tf and region in vars.tf

Run “terraform init” and “terraform plan” in the folder

Now run “terraform apply” command. It will ask to enter region and approve by entering yes.

Then it will start creating Queue and Topic.

We can see that a Topic and Queue has bveen created in AWS

