
Name: Lakshmi Bhargavi Nukala

Email: bhargavi.aqua04@gmail.com

H.T.No: 22063CDO117

AWS:
EC2:

1. Create an instance

2. Extra Volume of 1GB created

3. Attaching Volume to an instance

4. Creating a snapshot from the above created volume

5. Created Snapshot

6. Created an AMI from Apache-PHP instance:

7. Launching an instance from AMI:

8. Instance availability

9. Connected AMI instance from Console

10. Apache and PHP running on AMI instance

11. Editing the IN-Bound Rules of Security Group to give access to HTTP port no 80

12. Accessing the new AMI instance from Browser

Load Balancer:

1. Create a new Security Group with ports 22 and 80 open required to create a load balancer

2. Create a new Target Group for the instances to be connected on load balancer. Here we specify all

parameters like Healthy score, Unhealthy score, timeout etc.

3. Create a load balancer with above created security group ALBSG and target group ALB-TG

4. Created a load balancer that is in Active Status

5. Connect to Load Balancer from WebPage using dns name of load balancer

6. Try to access phpinfo.php page from the web and we can see that two IP addresses 172.31.4.61 and

172.31.12.150 are appearing alternatively

This shows the load balancer is working between the instances.

VPC:

1. Create a new VPC and provided range of VPC as 192.168.0.0/16

2. Create two subnets, one as Public subnet and one as Private Subnet in our VPC

3. Create two Route Tables, one for Public Subnet and One for Private Subnet

4. Associate Private Subnet to Private Route Table and Public subnet to Public Route Table

5. Create an Internet Gateway

6. Connect Public Route Table to Internet Gateway

7. Created two instances in VPC, one in Private Subnet and one in Public subnet

8. Login to Instance in Public subnet and try to Ping instance in Private subnet from
Instance in Public subnet

9. Ssh to private instance will fail, so Copied the pemtest.pem file onto Public EC2 instance
and changed the permissions

10. Now when we should be able to Connect to a private EC2 instance from a public EC2
instance using ssh

11. Create NAT GateWay to get internet connection to instances on Private Subnet

12. Attaching Private RouteTable to NAT Gateway

13. Pinging google.com from instance on Private Subnet

VPC Peering:

1. Create two VPCs, VPC-A and VPC-B

2. Create two public subnets with ranges (10.100.0.0/24) & (10.100.2.0/24) and one private

subnet with range (10.100.1.0/24) in VPC-A

Create one private subnet (10.200.1.0/24) in VPC-B

3. Create a private RouteTable for private subnet and public route table for 2 public subnets in

VPC-A
Create a private route table for private subnet in VPC-B

Associate the concerned subnets with the route tables.

4. Create an Internet Gateway and associate public Route Table of VPC-A to that Internet

Gateway.

5. Create a EC2 machine in each public subnet & private subnet should have 2 EC2 instance for

VPC-A
create one EC2 instance in private subnetof VPC-B

6. Connect to private EC2 instance of VPC-A from public EC2 instance of VPC-A

7. From this private instance of VPC-A, try to ping to private instance of VPC-B. It will fail as

there is no internet connection to VPC-B

8. So for communication between two private instances of VPC-A and VPC-B, create a peer

connection.

9. Accept the peering connection request

10. Update the private route tables of VPC-A and VPC-B with the newly created peering

connection.

11. Now if we ping from private EC2 instance of VPC-A to private EC2 instance of VPC-B, ping

will be successful

12. To connect to private EC2 instance of VPC-B, we need to copy the .pem file from public

EC2 instance of VPC-A to private EC2 instance of VPC-A and then ssh to private EC2 instance

of VPC-B

13. Now when we try to connect to private EC2 instance of VPC-B from private EC2 instance

of VPC-A, both ping and ssh will succeed. We can also observe that .pem file is available in

private EC2 instance of VPC-A

So peering connection is done and we are able to connect the private EC2 instances

of both VPC-A and VPC-B.

S3:

Creation of a bucket with name “bhargavi-nukala”

Create a directory “images” in bucket

Upload some images into “images” folder

Setting a bucket policy to make images public and accessible on web

Generating bucket policy using Policy Generator

After ARN name of bucket, we should add “/*” to make all objects of the bucket public.

Action should be selected as “GetObject”

Paste the generated JSON in bucket policy

Now access a uploaded image on the web

Use Object URL of the image to access the image on web.

S3 Versioning: Upload index.html into the bucket

Change the content of the index.html and upload a new one. We can check the versions by

enabling S3 versioning.

Click on “Show Versions” to see the previous versions of the index.html file.

Bucket Replication:

Create another bucket that is a Replica of bucket “bhargavi-nukala” in another region. Enable

“bucket versioning” for replica bucket.

Create a Replication rule on the Source bucket.

Create a new IAM role during creation of replication rule.

Now upload a file in Source bucket and it should be replicated in Replica bucket.

File uploaded in Source bucket.

File replicated in Replica bucket.

Tulips.jpg is now seen in bhargavi-nukala-replica bucket.

RDS:
Create a database

Connect to the database from MySQL WorkBench using EndPoint as Host

Create a database and use the database

Create a Table Student

Insert some rows into the Student table

Select rows from the Student table.

Amazon Aurora:

Create an Amazon Aurora Database. Check that a Write instance is created along with Actual

Database.

AZURE
Resource Group: Create a resource group to associate for all resources to be created in Azure

Create a Windows Virtual Machine under above created the ResourceGroup.

We should mention the username and password to connect to VM while creation only.

In Networking tab, check the “Delete IP address when VM is deleted” check box and see that Public IP is

set.

Virtual Machine is created.

We connect to Windows machine using Remote Desktop Connection.

Creation of a Linux Virtual Machine

Connect to Linux machine using “ssh username@publicIP”

Creating extra storage disks and mount a filesystem

In VM, click on Disks, and create a additional disk. Attach it to the VM and save.

Additional Storage “sdc” avaiable on Linux VM and shows not mounted

Now mount the storage using commands

$mkdir additionalstorage

$mkfs .ext4 /dev/sdc

$mount -t ext4/dev/sdc additionalstorage/

Create 10 files in the disk using the command

$touch {1..10}.txt

Unmount the additional Storage using the command

$umount additionalstorage/

Now attach the same disk to another VM

Connect to the VM and check the disk is already mounted and the additionalStorage is already available

on the disk. Also the 10 files which we created in previous VM are also available in this VM.

Snapshot:

Create a Linux VM and install apache2.

$apt update

$apt install apache2

Check the status of apache2 running

$systemctl status apache2

Add the Inbound rule for HTTP-80 port in Networking tab of VM

Access the webpage from browser using public IP of VM

Go to VM->Disks->Create Snapshot of the disk

Now create a disk from the created snapshot

Goto Created Snapshot->Create Disk

From the newly created disk-> create a VM

Select the above created disk in OS dropdown box

After the new VM is created from the snapshot, check the status of apache2.

We can see that apache2 is already installed.

Machine Image:

Create an Ubuntu machine and install apache2 and php as mentioned in the link

https://www.tecmint.com/install-lamp-with-phpmyadmin-in-ubuntu-18-04/

https://www.tecmint.com/install-lamp-with-phpmyadmin-in-ubuntu-18-04/

Install apache2 and php

Access the webpage of VM using public IP/info.php

To create an image of the above created VM, goto VM->Capture

Create a VM from this Image by selecting this image in OS section of VM.

Check that apache2 and php are already installed in this new VM

Network Security Group

Create a Vnet with two subnets—use Virtual Networks to create a Vnet.

In the Vnet, create 2 subnets

Now create one VM in each subnet.

Setup IIS server on both VM s. As we have created Vnet with default Inbound and Outbound

rules, with default rules, only Inbound traffic from same Vnet are allowed and from outside is

not allowed.

Load Balancer:

Create a Load Balancer by adding a new Frontend Configuration and adding a new Public IP.

Now add Backend pools for LB. Select the created Vnet and the machines we created in 2

subnets and add them to Backend Pool of LB.

Add a health probe for LB

Add Load Balancing Rules by selecting the above created Frontend, Backend pool and health

probe

Check that IIS server is installed on two VMs. Make changes in web pages located at

C:\inetpub\wwwroot to display VM1 and VM2.

Access webpage from browser using public IP of VM.

As seen, once VM1 is called and once VM2 is called by Load Balancer.

VPC:

Create a Virtual Network. Add 2 subnets, one public subnet and one private subnet.

Create 2 Vms, one in Public subnet and one VM in private subnet.

Public VM should be created by selecting the public IP.

Private VM should be created by not selecting the public IP.

Create a NAT Gateway to get Internet to Private Subnet. Select the Virtual Network and the

private subnet where you want Internet.

Now connect to private machine from public machine using remote desktop connection of public

VM. Access google.com on private VM and the page is displayed.

VPC Peering:

Create another Virtual Network in another region.

Now create a VM in Virtual Network2.

Add Peering in Virtual Network1. Goto VirtualNetwork1 and click on Peerings. Add peering

between both Vnets. As seen,Two peerings are created between 2 Vnets.

VN1->VN2

VN2->VN1

Now a peering is established and when you use private IP of VM of VN2 to connect from VM of

VN1, you should be able to connect.

DNS: Creation of a internal DNS server and Web server in 2 different subnets of same virtual

network

Create a VM1 in Virtual network1->PubSubnet

Connect to VM using Remote Desktop Connection. In server Manager, Add roles and features-

>Active Directory Domain Service.

Create another Subnet in Virtual Network1 called WebSvrSubnet.

Create another VM in WebSvrSubnet

Connect to VM-Webserver and install IIS server.

Create a Default.html page and save it in C:/inetpub/wwwroot in VM-Webserver

../../../../inetpub/wwwroot

Access Default.html from web browser using private IP of VM-Webserver

Restart DNS VM and in Server Manager, click on Notifications on Top Flag button.

Click on”Promote this to domain controller” link

Select Add to new Forest-> give our Domain name like “CloudtoMe.com”

Give password in Next screen and continue clicking Next and Install

Once this is configured, VM will Reboot.

Now, goto VirtualNetwork1->DNS servers, select Custom and give the Private IP address of

VM1-VN1(DNS server)

Restart both VMs

Now on DNS server, goto Server Manager->Tools->DNS

Goto VM1-VN1->Forward Lookup Zones->cloudtome.com

Right click and Add a new host entry. Give the Private IP address of VM-Webserver

This means we are configuring the Webserver IP on DNS server.

Now take the fully qualified name from this Host entry like

web-server.cloudtome.com/Default.html and access it from browser of DNS server.

This shows that internal DNS server is configured to access Webserver page within the same

virtual network.

Private DNS Zones:

Change the configuration of VirtualNetwork1->DNS servers to Default

Reboot both VMs.

Goto Private DNS Zones->Create->Name:cloudtome.com

In Private DNS Zone->Virtual network links->Add

After creating a virtual network link, click on Overview and we can see 2 entries with vm1-vn1

and vm-webserver created. This shows that websever is linked to our private DNS Zone and

Azure acts as a DNS server here.

Create another VirtualNetwork2 and create a VM in that Vnet

Goto Private DNS Zone cloudtome.com->add another virtual network link for this

VirtualNetwork2

Create a Vnet Peering between VirtualNetwork1 and VirtualNetwork2

Now logon to VM2-VN2 machine and try to access web-server.cloudtome.com/Default.html

