
Renduchintala	Navya	-	AIML	-	2306AML112
1.	 Design	a	NLP	model	on	Sarcasm	detection.

Electronic	journalism	powered	with	Social	media	has	become	one	of	the	major	sources	of	information	consumption	lately.	Many	media
houses	are	using	creative	ways	in	order	to	tap	into	increasing	views	on	posts.	One	of	the	ways	is	using	sarcastic	headlines	as	click	baits.
A	model	that	is	able	to	predict	whether	a	piece	of	headline	is	sarcastic	or	not	can	be	useful	for	media	houses	in	order	to	analyse	their
quarterly	earnings	by	strategy.	Also,	from	a	reader's	perspective,	search	engines	can	utilise	this	information	of	sarcasm	and	depending
on	the	reader’s	preference,	recommend	similar	articles	to	them.

The	goal	is	to	build	a	ANN	model	to	detect	whether	a	sentence	is	sarcastic	or	not?

https://github.com/Kavitha-Kothandaraman/Sarcasm-Detection-NLP

2.13.0

article_link headline is_sarcastic

0 https://www.huffingtonpost.com/entry/versace-b... former	versace	store	clerk	sues	over	secret	'b... 0

1 https://www.huffingtonpost.com/entry/roseanne-... the	'roseanne'	revival	catches	up	to	our	thorn... 0

2 https://local.theonion.com/mom-starting-to-fea... mom	starting	to	fear	son's	web	series	closest	... 1

3 https://politics.theonion.com/boehner-just-wan... boehner	just	wants	wife	to	listen,	not	come	up... 1

4 https://www.huffingtonpost.com/entry/jk-rowlin... j.k.	rowling	wishes	snape	happy	birthday	in	th... 0

...

26704 https://www.huffingtonpost.com/entry/american-... american	politics	in	moral	free-fall 0

26705 https://www.huffingtonpost.com/entry/americas-... america's	best	20	hikes 0

26706 https://www.huffingtonpost.com/entry/reparatio... reparations	and	obama 0

26707 https://www.huffingtonpost.com/entry/israeli-b... israeli	ban	targeting	boycott	supporters	raise... 0

26708 https://www.huffingtonpost.com/entry/gourmet-g... gourmet	gifts	for	the	foodie	2014 0

26709	rows	×	3	columns

(26709,	3)
is_sarcastic

count 26709.000000

mean 0.438953

std 0.496269

min 0.000000

25% 0.000000

50% 0.000000

75% 1.000000

max 1.000000

import	tensorflow	as	tf

#	Display	the	version
print(tf.__version__)

import	numpy	as	np	#	linear	algebra
import	pandas	as	pd	#	data	processing,	CSV	file	I/O	(e.g.	pd.read_csv)

import	matplotlib.pyplot	as	plt	#	plotting	library
%matplotlib	inline

from	keras.models	import	Sequential
from	keras.layers	import	Dense	,	Activation,	Dropout
from	keras.optimizers	import	Adam	,RMSprop
from	keras	import		backend	as	K

import	pandas	as	pd
import	os

data	=	pd.read_json(os.path.join('Sarcasm_Headlines_Dataset.json'),lines=True)

data

print	(data.shape)
data.describe()

"the	'roseanne'	revival	catches	up	to	our	thorny	political	mood,	for	better	and	worse"

[nltk_data]	Downloading	package	stopwords	to
[nltk_data]					C:\Users\User\AppData\Roaming\nltk_data...
[nltk_data]			Package	stopwords	is	already	up-to-date!

'the	roseanne	revival	catches	up	to	our	thorny	political	mood	for	better	and	worse'

240

27667

data['headline'][1]

##The	column	headline	needs	to	be	cleaned	up	as	we	have	special	characters	and	numbers	in	the	column

import	re
from	nltk.corpus	import	stopwords
import	nltk
import	string
nltk.download('stopwords')
stopwords	=	set(stopwords.words('english'))
def	cleanData(text):
		text	=	re.sub(r'\d+',	'',	text)
		text	=	"".join([char	for	char	in	text	if	char	not	in	string.punctuation])
		return	text

data['headline']=data['headline'].apply(cleanData)

data['headline'][1]

data.drop('article_link',inplace=True,axis=1)

maxlen	=	max([len(text)	for	text	in	data['headline']])
print(maxlen)

import	numpy	as	np
import	tensorflow	as	tf
from	tensorflow.keras.preprocessing.text	import	Tokenizer
from	tensorflow.keras.preprocessing.sequence	import	pad_sequences
from	tensorflow.keras.layers	import	Dense,	Input,	LSTM,	Embedding,	Dropout,	Activation,	Flatten,	Bidirectional,	
from	tensorflow.keras.models	import	Model,	Sequential

tokenizer	=	Tokenizer(num_words=10000,filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',lower=True,split='	',	char_level
tokenizer.fit_on_texts(data['headline'])

num_words=len(tokenizer.word_index)

print	(num_words)

sentences	=	data['headline'].tolist()
labels	=	data['is_sarcastic'].tolist()

#	Separate	out	the	sentences	and	labels	into	training	and	test	sets
training_size	=	int(len(sentences)	*	0.8)

training_sentences	=	sentences[0:training_size]
testing_sentences	=	sentences[training_size:]

training_labels	=	labels[0:training_size]
testing_labels	=	labels[training_size:]

#	Make	labels	into	numpy	arrays	for	use	with	the	network	later
training_labels_final	=	np.array(training_labels)
testing_labels_final	=	np.array(testing_labels)

vocab_size	=	10000
embedding_dim	=	16
max_length	=	10000
trunc_type='post'
padding_type='post'
oov_tok	=	"<OOV>"

from	tensorflow.keras.preprocessing.text	import	Tokenizer
from	tensorflow.keras.preprocessing.sequence	import	pad_sequences

tokenizer	=	Tokenizer(num_words	=	vocab_size,	oov_token=oov_tok)
tokenizer.fit_on_texts(training_sentences)
word_index	=	tokenizer.word_index
sequences	=	tokenizer.texts_to_sequences(training_sentences)
padded	=	pad_sequences(sequences,maxlen=max_length,	padding=padding_type,	
																							truncating=trunc_type)

testing_sequences	=	tokenizer.texts_to_sequences(testing_sentences)
testing_padded	=	pad_sequences(testing_sequences,maxlen=max_length,	

array([[300,				1,		805,	...,				0,				0,				0],
							[4,	6946,	2914,	...,				0,				0,				0],
							[148,		898,				2,	...,				0,				0,				0],
							...,
							[952,	3507,				5,	...,				0,				0,				0],
							[3032,				1,			12,	...,				0,				0,				0],
							[1154,		983,		209,	...,				0,				0,				0]])

Model:	"sequential"

	Layer	(type)																Output	Shape														Param	#			
===
	embedding	(Embedding)							(None,	10000,	16)									160000				
																																																																	
	flatten	(Flatten)											(None,	160000)												0									
																																																																	
	dense	(Dense)															(None,	6)																	960006				
																																																																	
	dense_1	(Dense)													(None,	1)																	7									
																																																																	
===
Total	params:	1120013	(4.27	MB)
Trainable	params:	1120013	(4.27	MB)
Non-trainable	params:	0	(0.00	Byte)

Epoch	1/10
668/668	[==============================]	-	186s	172ms/step	-	loss:	0.6886	-	accuracy:	0.5560	-	val_loss:	0.6846	
-	val_accuracy:	0.5680
Epoch	2/10
668/668	[==============================]	-	58s	86ms/step	-	loss:	0.6862	-	accuracy:	0.5593	-	val_loss:	0.6842	-	
val_accuracy:	0.5680
Epoch	3/10
668/668	[==============================]	-	58s	87ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6840	-	
val_accuracy:	0.5680
Epoch	4/10
668/668	[==============================]	-	60s	90ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6841	-	
val_accuracy:	0.5680
Epoch	5/10
668/668	[==============================]	-	60s	89ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6841	-	
val_accuracy:	0.5680
Epoch	6/10
668/668	[==============================]	-	59s	88ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6840	-	
val_accuracy:	0.5680
Epoch	7/10
668/668	[==============================]	-	59s	88ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6841	-	
val_accuracy:	0.5680
Epoch	8/10
668/668	[==============================]	-	59s	88ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6840	-	
val_accuracy:	0.5680
Epoch	9/10
668/668	[==============================]	-	62s	92ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6840	-	
val_accuracy:	0.5680
Epoch	10/10
668/668	[==============================]	-	60s	90ms/step	-	loss:	0.6861	-	accuracy:	0.5593	-	val_loss:	0.6840	-	
val_accuracy:	0.5680

(10000,	16)

																															padding=padding_type,	truncating=trunc_type)

padded

model	=	tf.keras.Sequential([
				tf.keras.layers.Embedding(vocab_size,	embedding_dim,	input_length=max_length),
				tf.keras.layers.Flatten(),
				tf.keras.layers.Dense(6,	activation='relu'),
				tf.keras.layers.Dense(1,	activation='sigmoid')
])
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
model.summary()

num_epochs	=	10	#Confined	Epochs	to	10	as	my	system	is	having	4GB	RAM	and	isn't	able	to	execute	for	higher	Epochs
history=model.fit(padded,	training_labels_final,	epochs=num_epochs,	validation_data=(testing_padded,	testing_labels_final

#	First	get	the	weights	of	the	embedding	layer

e	=	model.layers[0]
weights	=	e.get_weights()[0]
print(weights.shape)	#	shape:	(vocab_size,	embedding_dim)

#	Use	the	model	to	predict	sarcasm		
sarcasm	=	['Not	my	choice',	'How	can	this	be	true',	
																'Everything	was	cold',
																'Everything	was	hot	exactly	as	I	wanted',	
																'Everything	was	green',	
																'the	host	seated	us	immediately',
																'they	gave	us	free	chocolate	cake',	
																'not	sure	about	the	wilted	flowers	on	the	table',

['Not	my	choice',	'How	can	this	be	true',	'Everything	was	cold',	'Everything	was	hot	exactly	as	I	wanted',	'Eve
rything	was	green',	'the	host	seated	us	immediately',	'they	gave	us	free	chocolate	cake',	'not	sure	about	the	w
ilted	flowers	on	the	table',	'only	works	when	I	stand	on	tippy	toes',	'does	not	work	when	I	stand	on	my	head']
1/1	[==============================]	-	5s	5s/step
Not	my	choice
[0.43802047]

How	can	this	be	true
[0.43802047]

Everything	was	cold
[0.43802047]

Everything	was	hot	exactly	as	I	wanted
[0.43802047]

Everything	was	green
[0.43802047]

the	host	seated	us	immediately
[0.43802047]

they	gave	us	free	chocolate	cake
[0.43802047]

not	sure	about	the	wilted	flowers	on	the	table
[0.43802047]

only	works	when	I	stand	on	tippy	toes
[0.43802047]

does	not	work	when	I	stand	on	my	head
[0.43802047]

																'only	works	when	I	stand	on	tippy	toes',	
																'does	not	work	when	I	stand	on	my	head']

print(sarcasm)	

#	Create	the	sequences
padding_type='post'
sample_sequences	=	tokenizer.texts_to_sequences(sarcasm)
sarcasm_padded	=	pad_sequences(sample_sequences,	padding=padding_type,	maxlen=max_length)															

classes	=	model.predict(sarcasm_padded)

#	The	closer	the	class	is	to	1,	the	more	positive	the	review	is	deemed	to	be
for	x	in	range(len(sarcasm)):
		print(sarcasm[x])
		print(classes[x])
		print('\n')

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

