Using Credit Card Dataset develop a customer segmentation using KMeans to define marketing
strategy.

The Dataset summarizes the usage behavior of about 9000 active credit card holders during the
last 6 months.

The file is at a customer level with 18 behavioral variables.
Following is the Data Dictionary for Credit Card dataset :-

CUST_ID : Identification of Credit Card holder (Categorical) BALANCE : Balance amount left in
their account to make purchases (BALANCE_FREQUENCY : How frequently the Balance is
updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated)
PURCHASES : Amount of purchases made from account ONEOFF_PURCHASES : Maximum
purchase amount done in one-go INSTALLMENTS_PURCHASES : Amount of purchase done in
installment CASH_ADVANCE : Cash in advance given by the user PURCHASES_FREQUENCY :
How frequently the Purchases are being made, score between 0 and 1 (1 = frequently
purchased, 0 = not frequently purchased) ONEOFFPURCHASESFREQUENCY : How frequently
Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased)
PURCHASESINSTALLMENTSFREQUENCY : How frequently purchases in installments are being
done (1 = frequently done, 0 = not frequently done) CASHADVANCEFREQUENCY : How
frequently the cash in advance being paid CASHADVANCETRX : Number of Transactions made
with "Cash in Advanced" PURCHASES_TRX : Numbe of purchase transactions made
CREDIT_LIMIT : Limit of Credit Card for user PAYMENTS : Amount of Payment done by user
MINIMUM_PAYMENTS : Minimum amount of payments made by user PRCFULLPAYMENT :
Percent of full payment paid by user TENURE : Tenure of credit card service for user

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score
import warnings
warnings.filterwarnings("ignore™)

Load the dataset
data = pd.read_csv("desktop/python/CC_GENERAL.csv")

Drop categorical columns (CUST_ID) as they won't be used in clustering
data = data.drop("CUST_ID", axis=1)

Handling missing values
data = data.fillna(@) # Replace missing values with @

Standardize the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)

Finding the optimal number of clusters using the Elbow Method

inertia_values = []
silhouette_scores = []

for n_clusters in range(2, 11):
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
kmeans.fit(scaled_data)
inertia_values.append(kmeans.inertia_)
if n_clusters > 1:
silhouette_scores.append(silhouette_score(scaled_data, kmeans.labels))

Plotting the Elbow Method and Silhouette Score
plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(range(2, 11), inertia_values, marker='o0")
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia")

plt.title('Elbow Method')

plt.subplot(1, 2, 2)

plt.plot(range(2, 11), silhouette_scores, marker='o")
plt.xlabel('Number of Clusters')
plt.ylabel('Silhouette Score')

plt.title('Silhouette Score Method')

plt.tight_layout()
plt.show()

Based on the plots, let's choose the number of clusters (e.g., 4)
num_clusters = 4

Perform KMeans clustering
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(scaled_data)

Add cluster Labels to the original data
data['Cluster'] = kmeans.labels_

Analyzing the clusters
cluster_summary = data.groupby('Cluster').mean()

Print cluster summary
print(cluster_summary)

Elbow Method Silhouette Score Method

130000
0.25 1

120000 A
0.24

110000
0.23

0.22

Silhouette Score

0.21

0.20

T T T T T T T T T T T T T T T T T T
2 3 4 B 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of Clusters Number of Clusters

BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES \
Cluster
0 1012.658327 0.789924 270.041785 209.937299
1 894.907458 0.934734 1236.178934 593.974874
2 3551.153761 0.986879 7681.620098 5095.878826
3 4602.449658 0.968389 501.862982 320.188797
INSTALLMENTS_PURCHASES CASH_ADVANCE PURCHASES_FREQUENCY \
Cluster
7] 60.371441 596.509903 0.170145
1 642.478274 210.570626 0.885165
2 2587.208264 653.638891 0.946418
3 181.759123 4521.509581 0.287832
ONEOFF_PURCHASES FREQUENCY PURCHASES_ INSTALLMENTS_FREQUENCY \
Cluster
0 0.086301 0.080558
1 0.297070 0.711842
2 0.739031 0.788060
3 0.138911 0.185671
CASH_ADVANCE_FREQUENCY CASH_ADVANCE_TRX PURCHASES_TRX \
Cluster
7] 0.114846 2.125471 2.903193
1 0.042573 0.790021 22.091773
2 0.071290 2.085575 89.359413
3 0.484792 14.294904 7.665831
CREDIT_LIMIT PAYMENTS MINIMUM_PAYMENTS PRC_FULL_PAYMENT \
Cluster
7] 3277 .886179 974.260054 535.522656 0.077981
1 4213.207678 1332.194205 633.740218 0.269258
2 9696.943765 7288.739497 1970.476256 0.286707
3 7546.160857 3484.054216 2000.543192 0.034888
TENURE
Cluster
7] 11.446568
1 11.594595
2 11.951100
3 11.386800

