
Fraud is one of the major issues we come up majorly in banks, life insurance, health insurance, and many others. These major frauds are dependent on the person who is trying to sell

you the fake product or service, if you are matured enough to decide what is wrong then you will never get into any fraud transactions. But one such fraud that has been increasing a

lot these days is fraud in making payments.

payment_fraud.csv

Write a classification program and compare various classification algorithms using payment_fraud.csv dataset

In []: import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix

import warnings
warnings.filterwarnings('ignore')

df = pd.read_csv("desktop/python/payment_fraud.csv")
print(df.head())

df.fillna(0, inplace=True)

le = LabelEncoder()
df['localTime'] = le.fit_transform(df['localTime'])
df['accountAgeDays'] = le.fit_transform(df['accountAgeDays'])
df['paymentMethodAgeDays'] = le.fit_transform(df['paymentMethodAgeDays'])

X = df.drop(columns=['paymentMethod'])
y = df['localTime']

print(X)

print(y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=22, random_state=42)

classifiers = {
 "Logistic Regression": LogisticRegression(),
 "Random Forest": RandomForestClassifier(),
 "Support Vector Machine": SVC(),
 "Gradient Boosting": GradientBoostingClassifier(),
 "K-Nearest Neighbors": KNeighborsClassifier()
}

for name, classifier in classifiers.items():
 classifier.fit(X_train, y_train)
 y_pred = classifier.predict(X_test)

 accuracy = accuracy_score(y_test, y_pred)
 precision = precision_score(y_test, y_pred)
 recall = recall_score(y_test, y_pred)
 f1 = f1_score(y_test, y_pred)
 confusion = confusion_matrix(y_test, y_pred)

 print(f"Classifier: {name}")
 print(f"Accuracy: {accuracy:.4f}")
 print(f"Precision: {precision:.4f}")
 print(f"Recall: {recall:.4f}")
 print(f"F1-score: {f1:.4f}")
 print("Confusion Matrix:")
 print(confusion)
 print("\n")

