Bag of Words Model with Naive Bayes:

import pandas as pd

from bs4 import BeautifulSoup

from sklearn.model selection import train_test_ split

from sklearn.preprocessing import LabelEncoder

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

data = pd.read_csv('IMDB Dataset.csv')
data.head()

review sentiment

0 One of the other reviewers has mentioned that ... positive
1 A wonderful little production.

The... positive
2 |thought this was a wonderful way to spend ti... positive
3 Basically there's a family where a little boy ... negative
4 Petter Mattei's "Love in the Time of Money" is... positive

Basic Statistics

print("Number of rows: ", data.shape[0])
print("Number of columns: ", data.shape[1])

Number of rows: 50000
Number of columns: 2

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 2 columns):

Column Non-Null Count Dtype

0 review 50000 non-null object
1 sentiment 50000 non-null object
dtypes: object(2)
memory usage: 781.4+ KB

data.sentiment.value_counts()

positive 25000
negative 25000
Name: sentiment, dtype: inté64

from the above, we can confirm that the data is equally partioned.

Data Cleaning and preprocessing

data['review'][1]

'"A wonderful little production.

The filming technique is very unassuming- very old-time-BBC fashion and gives a comforting, and sometimes discomfo
rting, sense of realism to the entire piece.

The actors are extremely well chosen- Michael Sheen not only "has got all the polari" but he has all
the voices down pat too! You can truly see the seamless editing guided by the references to Williams\' diary entries, not only is it well worth the watching b
ut it is a terrificly written and performed piece. A masterful production about one of the great master\'s of comedy and his life.

The realism rea
11y comes home with the little things: the fantasy of the guard which, rather than use the traditional \'dream\' techniques remains solid then disappears. It
plays on our knowledge and our senses, particularly with the scenes concerning Orton and Halliwell and the sets (particularly of their flat with Halliwell\'s
murals decorating every surface) are terribly well done.'

In the above data we can see \
\ break tags. We need to remove them before using this data.

cleantext = BeautifulSoup(data["review"][1], 'Ixml').text

We need to remove the slash

import re
cleantext = re.sub(r'[AMw\s]', '', cleantext)
cleantext

'"A wonderful little production The filming technique is very unassuming very oldtimeBBC fashion and gives a comforting and sometimes discomforting sense of re
alism to the entire piece The actors are extremely well chosen Michael Sheen not only has got all the polari but he has all the voices down pat too You can tr
uly see the seamless editing guided by the references to Williams diary entries not only is it well worth the watching but it is a terrificly written and perf
ormed piece A masterful production about one of the great masters of comedy and his life The realism really comes home with the little things the fantasy of t
he guard which rather than use the traditional dream techniques remains solid then disappears It plays on our knowledge and our senses particularly with the s
cenes concerning Orton and Halliwell and the sets particularly of their flat with Halliwells murals decorating every surface are terribly well done'

import nltk
from nltk.corpus import stopwords

nltk.download('stopwords"')
stopwords.words('english')

[nltk_data] Error loading stopwords: <urlopen error [WinError 10060] A
[nltk_data] connection attempt failed because the connected party
[nltk_data] did not properly respond after a period of time, or
[nltk_data] established connection failed because connected host
[nltk_data] has failed to respond>
['i',

'me',

'my',

'myself',

'We',

'our',

'ours',

'ourselves',

‘you',

HyoulreH,

"yOUlve”,

HyoulllH,

"yOUld",

'your',

'yours',

'yourself',

'yourselves',

'he',

"him',

'his',

'himself',

'she',

ushelsn,

"her',

'hers',

'herself’,

Iitl,

"it'yw

'its',

'itself',

"they',

'"them',

'their',

'theirs',

'themselves',

'what',

'which',

'who',

'whom',

"this',

"that',

"that'l1l",

'these',

'those’,

'was',
'were',
lbell
'been’',
'being’',
'have',
'has',
'had',
"having',
ldol,
'does',
'did',
'doing',
IaI,
Ianl,
'the',
'and',
'but"',
Iifll
Iorll
'because’,
Iasll
'until',
'while',
'Of',
'at',
'by',
'for',
'with',
'about',
'against',
'between’,
'into',
"through',
'"during',
'before’,
'after’',
'above',
"below',
'to',
'from',
'up',
'down',
Iinl,
'out',
Ionl,
'off"',
'over',
'under',
'again',
'further',
'"then',
'once',
'here',
'there',
'when',
'where',
'Whyl,
"how',
'all',
'anyl,
'both',
'each',
'few',
'more’',
'most’',
'other’,
'some',
'such',
'no',
'nor',
'not’,
'only',
'own',
'same',
ISOII
'"than',
'too’,
'very',
Isl,

Itl,
'can',
'will',
'just',
'don’,
udonutn,
'should’,
"should've",
"now’,
IdI,
Illll

lyll

'ain',
'aren',
"aren't",
'couldn',
"couldn't",
'didn',
"didn't",
'doesn’,
"doesn't",
"hadn',
HhadnltH,
'hasn',
"hasn't",
"haven',
"haven't",
'isn',
uisnltn,
Imall
'mightn',
"mightn't",
'mustn’',
"mustn't",
'needn’,
"needn't",
'shan',
"Shan't”,
'shouldn’,
"shouldn't",
'wasn',
uwasnltn,
'weren',
"weren't",
'won',
uwonltn,
'wouldn',
"wouldn't"]

token = cleantext.lower().split()
stopword = set(stopwords.words('english'))
token_list = [word for word in token if word.lower () not in stopword]

" ".join(token_list)

'wonderful little production filming technique unassuming oldtimebbc fashion gives comforting sometimes discomforting sense realism entire piece actors extrem
ely well chosen michael sheen got polari voices pat truly see seamless editing guided references williams diary entries well worth watching terrificly written
performed piece masterful production one great masters comedy life realism really comes home little things fantasy guard rather use traditional dream techniqu
es remains solid disappears plays knowledge senses particularly scenes concerning orton halliwell sets particularly flat halliwells murals decorating every su
rface terribly well done'

lemmatizer = WordNetLemmatizer ()

lemmatizer.lemmatize(" ".join(token_list))

'wonderful little production filming technique unassuming oldtimebbc fashion gives comforting sometimes discomforting sense realism entire piece actors extrem
ely well chosen michael sheen got polari voices pat truly see seamless editing guided references williams diary entries well worth watching terrificly written
performed piece masterful production one great masters comedy life realism really comes home little things fantasy guard rather use traditional dream techniqu
es remains solid disappears plays knowledge senses particularly scenes concerning orton halliwell sets particularly flat halliwells murals decorating every su
rface terribly well done'

data.keys()

Index(['review', 'sentiment'], dtype='object')

from tqdm import tqgdm

def data_cleaner(data):
clean_data = []
for review in tqdm(data):

cleantext = BeautifulSoup(review, "Ixml").text

cleantext = re.sub(r'[AMw\s]', '', cleantext)

cleantext = [token for token in cleantext.lower().split() if token not in stopword]
cleantext = lemmatizer.lemmatize(" ".join(cleantext))

clean_data.append(cleantext.strip())
return clean_data

clean_data = data_cleaner(data.review.values)

clean_data[Q]

'one reviewers mentioned watching 1 oz episode youll hooked right exactly happened methe first thing struck oz brutality unflinching scenes violence set right
word go trust show faint hearted timid show pulls punches regards drugs sex violence hardcore classic use wordit called oz nickname given oswald maximum secur
ity state penitentary focuses mainly emerald city experimental section prison cells glass fronts face inwards privacy high agenda em city home manyaryans musl
ims gangstas latinos christians italians irish moreso scuffles death stares dodgy dealings shady agreements never far awayi would say main appeal show due fac
t goes shows wouldnt dare forget pretty pictures painted mainstream audiences forget charm forget romanceoz doesnt mess around first episode ever saw struck n
asty surreal couldnt say ready watched developed taste oz got accustomed high levels graphic violence violence injustice crooked guards wholl sold nickel inma
tes wholl kill order get away well mannered middle class inmates turned prison bitches due lack street skills prison experience watching oz may become comfort
able uncomfortable viewingthats get touch darker side'

Train test split

X_train, X_test, y_train, y_test = train_test_split(data, data.sentiment, test_size=0.2, random_state=42, stratify=data.sentiment)

le = LabelEncoder ()

y_train = le.fit_transform(y_train)
le_test = LabelEncoder ()

y_test = le_test.fit_transform(y_test)

print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)

(40000, 2) (40000,)
(10000, 2) (10000,)

clean_data_train_data = data_cleaner(X_train.review.values)

X_train['cleaned_text'] = clean_data_train_data
X_train.head()

review sentiment cleaned_text
47808 | caught this little gem totally by accident b... positive caught little gem totally accident back 1980 8...
20154 | can't believe that | let myself into this mo... negative cant believe let movie accomplish favor friend...
43069 *spoiler alert!* it just gets to me the nerve ... negative spoiler alert gets nerve people remake use ter...
19413 If there's one thing I've learnt from watching... negative theres one thing ive learnt watching george ro...
13673 | remember when this was in theaters, reviews ... negative remember theaters reviews said horrible well d...

clean_data_test_data =
X_test['cleaned_text']
X_test.head()

data_cleaner (X _test.review.values)
= clean_data_test_data

Vectorizer

vec = CountVectorizer()

vec = vec.fit(X_train.cleaned_text)

train_x_bow = vec.transform(X_train.cleaned_text)
test_x_bow = vec.transform(X_test.cleaned_text)

print(train_x_bow.shape)
print(test_x_bow.shape)

(40000, 192139)
(10000, 192139)

Naive Bayes with Hyperparameter Tuning
classifier = MultinomialNB()
alpha_ranges = {"alpha": [0.001, 0.01, 0.1, 1, 10.0, 100]}

grid_search = GridSearchCV(classifier, param_grid=alpha_ranges, scoring='accuracy', cv=3, return_train_score=True)
grid_search.fit(train_x_bow, y_train)

alpha = [0.001, 0.01, 0.1, 1, 10.0, 100]

train_acc = grid_search.cv_results_['mean_train_score']
train_std = grid_search.cv_results_['std_train_score']
test_acc = grid_search.cv_results_['mean_test_score']
test_std = grid_search.cv_results_['std_test_score']

grid_search.best_estimator_

classifier = MultinomialNB(alpha=1)
classifier.fit(train_x_bow, y_train)

predict = classifier.predict(test_x_bow)

print("Accuracy is ", accuracy_score(y_test, predict))

Accuracy is 0.8599

print("Accuracy is ", classification_report(y_test, predict))

Accuracy is precision recall fl-score support
0 0.85 0.88 0.86 5000
1 0.87 0.84 0.86 5000
accuracy 0.86 10000
macro avg 0.86 0.86 0.86 10000
weighted avg 0.86 0.86 0.86 10000

TF-IDF Model with Naive Bayes:

Vectorize the text using TF-IDF model

tfidf_vectorizer = TfidfVectorizer()

X_train_tfidf = tfidf_vectorizer.fit_transform(X_train.cleaned_text)
X_test_tfidf = tfidf_vectorizer.transform(X_test.cleaned_text)

Train a Naive Bayes classifier on the TF-IDF features
nb_classifier_tfidf = MultinomialNB()
nb_classifier_tfidf.fit(X_train_tfidf, y_train)

Predict and calculate accuracy

predictions_tfidf = nb_classifier_tfidf.predict(X_test_tfidf)
accuracy_tfidf = accuracy_score(y_test, predictions_tfidf)
print("Accuracy using TF-IDF model:", accuracy_tfidf)

Accuracy using TF-IDF model: 0.867

