In [22]: import pandas as pd import numpy as np

adult = pd.read_csv('adult.data', names=features)
adult

Out[23]:		Age	Workclass	fnlwgt	Education	Education-Num	Martial Status	Occupation	Relationship	Race	Sex	Capital Gain	Capital Loss	Hours per week	Country	Target
_	0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
	1	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
	2	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
	3	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
	4	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
	32556	27	Private	257302	Assoc-acdm	12	Married-civ-spouse	Tech-support	Wife	White	Female	0	0	38	United-States	<=50K
	32557	40	Private	154374	HS-grad	9	Married-civ-spouse	Machine-op-inspct	Husband	White	Male	0	0	40	United-States	>50K
	32558	58	Private	151910	HS-grad	9	Widowed	Adm-clerical	Unmarried	White	Female	0	0	40	United-States	<=50K
	32559	22	Private	201490	HS-grad	9	Never-married	Adm-clerical	Own-child	White	Male	0	0	20	United-States	<=50K
	32560	52	Self-emp-inc	287927	HS-grad	9	Married-civ-spouse	Exec-managerial	Wife	White	Female	15024	0	40	United-States	>50K

32561 rows × 15 columns

In [24]: adult["Sex"].value_counts()

Out[24]: Male 21790 Female 10771 Name: Sex, dtype: int64

In [25]: adult[["Sex", "Age"]].groupby("Sex").mean()

Age

Out[25]:

Sex

Female 36.858230

Male 39.433547

In [26]: gen_fem = adult[adult["Sex"].str.contains("Female")]
gen_fem["Age"].mean()

Out[26]: 36.85823043357163

In [27]: percent_germany = adult[adult['Country'].str.contains('Germany')]
propo_germany = (len(percent_germany)*100)/len(adult)
print("Proportion of German Citizens:", propo_germany)

Proportion of German Citizens: 0.42074874850281013

In [28]: age_more50k = adult[adult['Target'].str.contains('>50K')]
print("Mean value of Age who is having Target >50K:", age_more50k.Age.mean().round(2))
print("Std value of Age who is having Target >50K:", age_more50k.Age.std())

Mean value of Age who is having Target >50K: 44.25 Std value of Age who is having Target >50K: 10.51902771985177

In [29]: age_less50k = adult[adult['Target'].str.contains('<=50K')]
print("Mean value of Age who is having Target <=50K:", age_less50k.Age.mean().round(2))
print("Std value of Age who is having Target <=50K:", age_less50k.Age.std())
Mean value of Age who is having Target <=50K: 36.78</pre>

Std value of Age who is having Target <=50K: 14.020088490824813

In [30]: adult[adult['Target'].str.contains('>50K')]['Education'].unique()

Out[30]: array([' HS-grad', ' Masters', ' Bachelors', ' Some-college', ' Assoc-voc', ' Doctorate', ' Prof-school', ' Assoc-acdm', ' 7th-8th', ' 12th', ' 10th', ' 11th', ' 9th', ' 5th-6th', ' 1st-4th'], dtype=object)