
Dataset
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

[nltk_data] Downloading package wordnet to
[nltk_data] C:\Users\admin\AppData\Roaming\nltk_data...
[nltk_data] Package wordnet is already up-to-date!
True

review sentiment

0 One of the other reviewers has mentioned that ... positive

1 A wonderful little production.

The... positive

2 I thought this was a wonderful way to spend ti... positive

3 Basically there's a family where a little boy ... negative

4 Petter Mattei's "Love in the Time of Money" is... positive

...

49995 I thought this movie did a down right good job... positive

49996 Bad plot, bad dialogue, bad acting, idiotic di... negative

49997 I am a Catholic taught in parochial elementary... negative

49998 I'm going to have to disagree with the previou... negative

49999 No one expects the Star Trek movies to be high... negative

50000 rows × 2 columns

In [1]: import numpy as np
import pandas as pd
import re
import nltk
import seaborn as sns
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score,classification_report as cr

In [2]: import nltk
nltk.download('wordnet')

Out[2]:

In [3]: movie_reviews = pd.read_csv('IMDB Dataset.csv')

In [4]: movie_reviews

Out[4]:

In [5]: # Looking for one review example
movie_reviews['review'].loc[49995]

Loading [MathJax]/extensions/Safe.js

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

"I thought this movie did a down right good job. It wasn't as creative or original as th
e first, but who was expecting it to be. It was a whole lotta fun. the more i think abou
t it the more i like it, and when it comes out on DVD I'm going to pay the money for it
very proudly, every last cent. Sharon Stone is great, she always is, even if her movie i
s horrible(Catwoman), but this movie isn't, this is one of those movies that will be und
errated for its lifetime, and it will probably become a classic in like 20 yrs. Don't wa
it for it to be a classic, watch it now and enjoy it. Don't expect a masterpiece, or som
ething thats gripping and soul touching, just allow yourself to get out of your life and
get yourself involved in theirs.

All in all, this movie is entertaining and i
recommend people who haven't seen it see it, because what the critics and box office say
doesn't always count, see it for yourself, you never know, you might just enjoy it. I ti
p my hat to this movie

8/10"

[nltk_data] Downloading package stopwords to
[nltk_data] C:\Users\admin\AppData\Roaming\nltk_data...
[nltk_data] Package stopwords is already up-to-date!
True

<Axes: xlabel='sentiment', ylabel='count'>

Out[5]:

In []: import nltk
import ssl

try:
 _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
 pass
else:
 ssl._create_default_https_context = _create_unverified_https_context

nltk.download()

In [6]: # Downloading Stop Words
nltk.download('stopwords')

Out[6]:

In [7]: sns.countplot(x='sentiment',data=movie_reviews)

Out[7]:

Loading [MathJax]/extensions/Safe.js

Implementing Stemming and removing stop words
in the reviews

Applying BagOfWords (BOW) Method

Navie Bayes

0.83872
 precision recall f1-score support

 0 0.84 0.84 0.84 6291
 1 0.84 0.84 0.84 6209

 accuracy 0.84 12500
 macro avg 0.84 0.84 0.84 12500
weighted avg 0.84 0.84 0.84 12500

In [8]: # Calling portstemmer for the purpose of stemming the words in review
ps = PorterStemmer()

In [9]: corpus = []
for i in range(0,len(movie_reviews)):
 review = re.sub('[^a-zA-Z]',' ',movie_reviews['review'][i])
 review = review.lower()
 review = review.split()
 review = [ps.stem(word) for word in review if not word in stopwords.words('english')
 review = ' '.join(review)
 corpus.append(review)

In [10]: # Creating a bag of words model
cv = CountVectorizer(max_features=2500)
x = cv.fit_transform(corpus).toarray()

In [11]: # Converting the categorical values into dummy variables
y = pd.get_dummies(movie_reviews['sentiment'])
y = y.iloc[:,1].values

In [12]: # spliting the data for traing and testing
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size=0.25,random_state=0)

In [13]: #Creating navie bayes model
text_analysis_model = MultinomialNB().fit(X_train,y_train)

In [14]: # prediction
y_pred = text_analysis_model.predict(X_test)

In [15]: # getting accuracy score for test data and predicted data
score = accuracy_score(y_test,y_pred)
print(score)
print(cr(y_test,y_pred))

Loading [MathJax]/extensions/Safe.js

Implementation of Lemmatization and removing
stop words in the reviews

Applying BagOfWords (BOW)

Naive Bayes

0.8404
 precision recall f1-score support

 0 0.84 0.84 0.84 6291
 1 0.84 0.84 0.84 6209

 accuracy 0.84 12500
 macro avg 0.84 0.84 0.84 12500
weighted avg 0.84 0.84 0.84 12500

Implementing Tf-Idf for Lemmatization

In [16]: lemmatizer=WordNetLemmatizer()

In [17]: corpus = []
for i in range(0, len(movie_reviews)):
 review = re.sub('[^a-zA-Z]', ' ', movie_reviews['review'][i])
 review = review.lower()
 review = review.split()

 review = [lemmatizer.lemmatize(word) for word in review if not word in stopwords.wor
 review = ' '.join(review)
 corpus.append(review)

In [18]: # Creating Bag of Words model
cv = CountVectorizer(max_features=2500)
x = cv.fit_transform(corpus).toarray()

In [19]: # Converting the categorical values into dummy variables
y = pd.get_dummies(movie_reviews['sentiment'])
y = y.iloc[:,1].values

In [20]: # spliting the data for traing and testing
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size=0.25,random_state=0)

In [21]: text_analysis_model2 = MultinomialNB().fit(X_train,y_train)

In [22]: y_prediction = text_analysis_model2.predict(X_test)

In [23]: score = accuracy_score(y_test,y_prediction)
print(score)
print(cr(y_test,y_prediction))

Loading [MathJax]/extensions/Safe.js

Naive bayes for Tf-Idf

0.8471
 precision recall f1-score support

 0 0.86 0.84 0.85 5035
 1 0.84 0.86 0.85 4965

 accuracy 0.85 10000
 macro avg 0.85 0.85 0.85 10000
weighted avg 0.85 0.85 0.85 10000

Results of Bag Of Words(BOW)
Accuracy

Stemming Naive-Bayes - 83.87% ~ (84%)

Lemmatization Naive-Bayes - 84.04% ~ (84%)

Results of TF-IDF
Lemmatization Naive-Bayes - 84.71% ~ (85%)

In [24]: # Creating a TFIDF model
from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer(max_features=2500)
X = tv.fit_transform(corpus).toarray()

In [25]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state

In [26]: text_analysis_model2 = MultinomialNB().fit(X_train,y_train)

In [27]: y_predtf = text_analysis_model2.predict(X_test)

In [28]: score=accuracy_score(y_test,y_predtf)
print(score)
print(cr(y_test,y_predtf))

Loading [MathJax]/extensions/Safe.js

