
2/15/24, 2:33 PM Untitled45

localhost:8888/nbconvert/html/Untitled45.ipynb?download=false 1/1

Enter student's name and grade (or 'done' to finish): chi,20.0
Enter student's name and grade (or 'done' to finish): beta,50.0
Enter student's name and grade (or 'done' to finish): alpha,50.0
Enter student's name and grade (or 'done' to finish): done
Student(s) with the second lowest grade:
alpha
beta

In [3]: def find_second_lowest_grade(records):
 # Flatten the list
 flattened_records = [item for sublist in records for item in sublist]

 # Sort the records based on grades
 sorted_records = sorted(flattened_records, key=lambda x: (x[1], x[0]))

 # Find the second lowest grade
 second_lowest_grade = sorted(set(record[1] for record in sorted_records))[1]

 # Find students with the second lowest grade
 students_with_second_lowest = [record[0] for record in sorted_records if record[1]

 return students_with_second_lowest

Test the function
if __name__ == "__main__":
 records = []
 while True:
 record_input = input("Enter student's name and grade (or 'done' to finish): ")
 if record_input.lower() == 'done':
 break
 else:
 # Split input to get name and grade and create the nested list
 name, grade = record_input.split(',')
 records.append([[name.strip(), float(grade.strip())]])

 second_lowest_students = find_second_lowest_grade(records)
 if second_lowest_students:
 print("Student(s) with the second lowest grade:")
 for student in sorted(second_lowest_students):
 print(student)
 else:
 print("There are no students with the second lowest grade.")

In []:

2/15/24, 2:26 PM Untitled44

localhost:8888/nbconvert/html/Untitled44.ipynb?download=false 1/1

Enter the array of integers separated by commas: 2,7,11,15
Enter the target sum: 9
Indices of the two numbers that add up to the target: [0, 1]
Explanation: The sum of 2 at index 0 and 7 at index 1 equals the target 9.

In [5]: def two_sum(nums, target):
 num_index_map = {}

 for i, num in enumerate(nums):
 complement = target - num
 if complement in num_index_map:
 return [num_index_map[complement], i]
 num_index_map[num] = i

 return []

Test the function with user input
if __name__ == "__main__":
 nums = list(map(int, input("Enter the array of integers separated by commas: ").sp
 target = int(input("Enter the target sum: "))
 result = two_sum(nums, target)
 if result:
 print("Indices of the two numbers that add up to the target:", result)
 explanation = "Explanation: The sum of {} at index {} and {} at index {} equal
 nums[result[0]], result[0], nums[result[1]], result[1], target)
 print(explanation)
 else:
 print("No two numbers found that add up to the target.")

In []:

In []:

