
ALEKHYA THOGITI

ASSIGNMENT-17

1.Explain Data Encryption Standard (DES) and Rivest-Shamir-

Adleman (RSA) Algorithms.

Data Encryption Standard (DES)

The Data Encryption Standard (DES) is a symmetric-key algorithm for the encryption of

electronic data. It was developed in the 1970s and was adopted as a federal standard in the

United States in 1977. DES was once widely used in various applications, including securing

ATM transactions and electronic communications.

Features:

1. Symmetric Key Encryption: DES uses the same key for both encryption and

decryption, meaning both the sender and receiver must have the same key.

2. Block Cipher: DES operates on fixed-size blocks of data, specifically 64-bit blocks.

3. Key Size: DES uses a 56-bit key for encryption, though the effective key length is

technically 64 bits with 8 bits used for parity.

4. Rounds: The algorithm performs 16 rounds of processing on the data. Each round

involves a series of permutations and substitutions based on the key.

5. Feistel Structure: DES uses a Feistel network structure, where the data block is split

into two halves, and the process is applied iteratively.

Strengths and Weaknesses:

Strengths: DES was considered highly secure when it was first introduced and played a key

role in advancing the field of cryptography.

Weaknesses: The 56-bit key size is now considered too small, making DES vulnerable to

brute-force attacks. Advances in computing power have rendered DES insecure for many

applications.

Successor:

Due to its vulnerabilities, DES has largely been replaced by the Advanced Encryption

Standard (AES), which offers stronger security with larger key sizes and more robust

encryption techniques.

Rivest-Shamir-Adleman (RSA)

RSA is an asymmetric cryptographic algorithm used for secure data transmission. It was

invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman, and is widely used for

secure data transmission, digital signatures, and key exchange.

Features:

1. Asymmetric Key Encryption: RSA uses a pair of keys: a public key for encryption and

a private key for decryption. The public key can be shared openly, while the private

key is kept secret.

2. Mathematical Foundation: RSA's security is based on the mathematical difficulty of

factoring large composite numbers into their prime factors.

3. Key Size: RSA keys are typically 1024, 2048, or 4096 bits long. Larger key sizes provide

greater security but require more computational resources.

4. Encryption and Decryption: The encryption process involves raising the plaintext to a

power (the public key) and then taking the modulus of a product of two large primes

(the modulus). Decryption involves raising the ciphertext to a power (the private key)

and then taking the modulus of the same product.

Process:

Key Generation: Generate two large prime numbers, multiply them to get the modulus, and

derive the public and private keys from these values.

Encryption: Encrypt a message by raising it to the power of the public key and taking the

modulus.

Decryption: Decrypt the message by raising the ciphertext to the power of the private key

and taking the modulus.

Strengths and Weaknesses:

Strengths: RSA provides robust security and is widely used in securing internet

communications, including SSL/TLS for web browsers, email encryption, and digital

signatures.

Weaknesses: RSA is computationally intensive, especially with larger key sizes. It is slower

compared to symmetric-key algorithms like AES for encrypting large amounts of data.

Applications:

RSA is commonly used for secure key exchange, where a symmetric key can be securely

shared between parties using RSA encryption. It is also used for digital signatures, where the

authenticity of a message can be verified.

DES: A symmetric-key block cipher with a 56-bit key, considered obsolete due to

vulnerability to brute-force attacks.

RSA: An asymmetric-key algorithm used for secure data transmission and digital signatures,

based on the difficulty of factoring large numbers.

2. Explain Diffie-Hellman Key Exchange Algorithm With an Example

Diffie-Hellman Key Exchange Algorithm

The Diffie-Hellman Key Exchange algorithm is a method for securely exchanging

cryptographic keys over a public channel. It was one of the first practical implementations of

public key exchange and is used to establish a shared secret between two parties, which can

then be used for encrypting subsequent communications with a symmetric key algorithm.

Key Features:

Asymmetric Key Exchange: Involves the use of public and private keys but not for encryption

and decryption. Instead, it establishes a shared secret key.

Mathematical Foundation: Based on the difficulty of solving the discrete logarithm problem

in finite fields.

Security: Relies on the computational difficulty of determining the shared secret from the

public values.

Steps:

1. Both parties agree on two large prime numbers, p (a prime number) and g (a

primitive root modulo p).

2. Each party generates a private key, a and b, which are random numbers kept secret.

3. Each party computes a public value based on their private key

 Party 1 (Alice) computes A=gamod  pA = g^a \mod pA=gamodp

 Party 2 (Bob) computes B=gbmod  pB = g^b \mod pB=gbmodp

4. The public values A and B are exchanged over the public channel.

5. Each party then computes the shared secret key using the other party's public value

and their own private key:

 Alice computes the shared secret as s=Bamod  ps = B^a \mod ps=Bamodp

 Bob computes the shared secret as s=Abmod  ps = A^b \mod ps=Abmodp

6. Both Alice and Bob now have the same shared secret key, s, which can be used for

secure communication.

Example:

Step-by-Step Example:

1. Agree on public values:

o Prime number p=23p = 23p=23

o Primitive root g=5g = 5g=5

2. Private keys:

o Alice's private key a=6a = 6a=6

o Bob's private key b=15b = 15b=15

3. Compute public values:

o Alice computes A=gamod  p=56mod  23=15625mod  23=8A = g^a \mod p =

5^6 \mod 23 = 15625 \mod 23 = 8A=gamodp=56mod23=15625mod23=8

o Bob computes B=gbmod  p=515mod  23=30517578125mod  23=19B = g^b

\mod p = 5^{15} \mod 23 = 30517578125 \mod 23 =

19B=gbmodp=515mod23=30517578125mod23=19

4. Exchange public values:

o Alice sends A=8A = 8A=8 to Bob

o Bob sends B=19B = 19B=19 to Alice

5. Compute shared secret:

o Alice computes s=Bamod  p=196mod  23=47045881mod  23=2s = B^a \mod p

= 19^6 \mod 23 = 47045881 \mod 23 =

2s=Bamodp=196mod23=47045881mod23=2

o Bob computes s=Abmod  p=815mod  23=35184372088832mod  23=2s = A^b

\mod p = 8^{15} \mod 23 = 35184372088832 \mod 23 =

2s=Abmodp=815mod23=35184372088832mod23=2

6. Result:

o Both Alice and Bob now share the secret key s=2s = 2s=2.

Security Considerations:

 The security of the Diffie-Hellman Key Exchange relies on the difficulty of computing

the discrete logarithm, which is considered computationally infeasible for large prime

numbers.

 The values of ppp and ggg should be chosen carefully to ensure security.

 Diffie-Hellman is vulnerable to man-in-the-middle attacks if not authenticated,

meaning an attacker could intercept and modify the public values exchanged

between the parties. To prevent this, Diffie-Hellman can be combined with digital

signatures or other authentication methods.

3. Explain Digital Signature Algorithm (DSA) With an Example.

Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) is a Federal Information Processing Standard for digital

signatures. It was proposed by the National Institute of Standards and Technology (NIST) in

1991 for use in their Digital Signature Standard (DSS). DSA is used to generate a digital

signature, which can be used to verify the authenticity and integrity of a message.

Key Features:

1. Asymmetric Key Algorithm: DSA uses a pair of keys, a private key for signing and a

public key for verification.

2. Mathematical Foundation: Based on the mathematical principles of modular

exponentiation and discrete logarithms.

3. Security: The security of DSA is based on the difficulty of solving the discrete

logarithm problem.

Components:

 p: A large prime number, typically between 512 and 1024 bits.

 q: A 160-bit prime factor of p−1p-1p−1.

 g: A number less than ppp such that g=h(p−1)/qmod  pg = h^{(p-1)/q} \mod

pg=h(p−1)/qmodp where hhh is any number less than ppp and

h(p−1)/qmod  p>1h^{(p-1)/q} \mod p > 1h(p−1)/qmodp>1.

 Private Key (x): A randomly selected integer such that 0<x<q0 < x < q0<x<q.

 Public Key (y): Calculated as y=gxmod  py = g^x \mod py=gxmodp.

Steps for Signing and Verifying a Message

1. Key Generation:

o Choose parameters ppp, qqq, and ggg.

o Select a private key xxx randomly from the interval (0,q)(0, q)(0,q).

o Compute the public key y=gxmod  py = g^x \mod py=gxmodp.

2. Signing a Message:

o Generate a random integer kkk such that 0<k<q0 < k < q0<k<q.

o Compute r=(gkmod  p)mod  qr = (g^k \mod p) \mod qr=(gkmodp)modq.

o Compute the hash of the message H(m)H(m)H(m).

o Compute s=(k−1(H(m)+x⋅r))mod  qs = (k^{-1} (H(m) + x \cdot r)) \mod

qs=(k−1(H(m)+x⋅r))modq.

o The signature of the message is the pair (r,s)(r, s)(r,s).

3. Verifying a Signature:

o Verify that 0<r<q0 < r < q0<r<q and 0<s<q0 < s < q0<s<q; if not, the signature

is invalid.

o Compute the hash of the message H(m)H(m)H(m).

o Compute w=s−1mod  qw = s^{-1} \mod qw=s−1modq.

o Compute u1=(H(m)⋅w)mod  qu_1 = (H(m) \cdot w) \mod qu1=(H(m)⋅w)modq

and u2=(r⋅w)mod  qu_2 = (r \cdot w) \mod qu2=(r⋅w)modq.

o Compute v=((gu1⋅yu2)mod  p)mod  qv = ((g^{u_1} \cdot y^{u_2}) \mod p)

\mod qv=((gu1⋅yu2)modp)modq.

o The signature is valid if and only if v=rv = rv=r.

Example:

1. Key Generation:

o Let p=23p = 23p=23, q=11q = 11q=11, and g=2g = 2g=2.

o Choose private key x=6x = 6x=6.

o Compute public key y=gxmod  p=26mod  23=64mod  23=18y = g^x \mod p =

2^6 \mod 23 = 64 \mod 23 = 18y=gxmodp=26mod23=64mod23=18.

2. Signing a Message:

o Let the message be "Hello".

o Compute the hash H(m)H(m)H(m). For simplicity, let's assume H(m)=9H(m) =

9H(m)=9.

o Choose random k=3k = 3k=3.

o Compute r=(gkmod  p)mod  q=(23mod  23)mod  11=8mod  11=8r = (g^k \mod

p) \mod q = (2^3 \mod 23) \mod 11 = 8 \mod 11 =

8r=(gkmodp)modq=(23mod23)mod11=8mod11=8.

o Compute s=(k−1(H(m)+x⋅r))mod  qs = (k^{-1} (H(m) + x \cdot r)) \mod

qs=(k−1(H(m)+x⋅r))modq.

 Compute k−1mod  qk^{-1} \mod qk−1modq: 3−1mod  11=43^{-1}

\mod 11 = 43−1mod11=4 (since 3×4mod  11=13 \times 4 \mod 11 =

13×4mod11=1).

 Compute

s=(4×(9+6⋅8))mod  11=(4×(9+48))mod  11=(4×57)mod  11=228mod  11

=8s = (4 \times (9 + 6 \cdot 8)) \mod 11 = (4 \times (9 + 48)) \mod 11

= (4 \times 57) \mod 11 = 228 \mod 11 =

8s=(4×(9+6⋅8))mod11=(4×(9+48))mod11=(4×57)mod11=228mod11=8.

o The signature is (r,s)=(8,8)(r, s) = (8, 8)(r,s)=(8,8).

3. Verifying a Signature:

o Verify 0<r<q0 < r < q0<r<q and 0<s<q0 < s < q0<s<q: Both conditions are true.

o Compute the hash H(m)=9H(m) = 9H(m)=9.

o Compute w=s−1mod  q=8−1mod  11=7w = s^{-1} \mod q = 8^{-1} \mod 11 =

7w=s−1modq=8−1mod11=7 (since 8×7mod  11=18 \times 7 \mod 11 =

18×7mod11=1).

o Compute u1=(H(m)⋅w)mod  q=(9×7)mod  11=63mod  11=8u_1 = (H(m) \cdot

w) \mod q = (9 \times 7) \mod 11 = 63 \mod 11 = 8u1

=(H(m)⋅w)modq=(9×7)mod11=63mod11=8.

o Compute u2=(r⋅w)mod  q=(8×7)mod  11=56mod  11=1u_2 = (r \cdot w) \mod

q = (8 \times 7) \mod 11 = 56 \mod 11 = 1u2

=(r⋅w)modq=(8×7)mod11=56mod11=1.

o Compute

v=((gu1⋅yu2)mod  p)mod  q=((28⋅181)mod  23)mod  11=(256⋅18mod  23)mod  

11=(4608mod  23)mod  11=(2)mod  11=8v = ((g^{u_1} \cdot y^{u_2}) \mod p)

\mod q = ((2^8 \cdot 18^1) \mod 23) \mod 11 = (256 \cdot 18 \mod 23)

\mod 11 = (4608 \mod 23) \mod 11 = (2) \mod 11 = 8v=((gu1⋅yu2

)modp)modq=((28⋅181)mod23)mod11=(256⋅18mod23)mod11=(4608mod23)

mod11=(2)mod11=8.

o Since v=rv = rv=r, the signature is valid.

DSA is a widely used digital signature algorithm that ensures the authenticity and integrity of

a message. It relies on the difficulty of the discrete logarithm problem and involves key

generation, message signing, and signature verification processes.

4. Explain the Following Types of One-time Password (OTP)

Algorithms with Examples: a. Time-based OTP (TOTP) b. HMAC-

based OTP (HOTP)

One-time Password (OTP) Algorithms

One-time passwords (OTPs) are passwords that are valid for only one login session or

transaction, enhancing security by reducing the risk of password interception or replay

attacks. Two common OTP algorithms are Time-based OTP (TOTP) and HMAC-based OTP

(HOTP).

a. Time-based OTP (TOTP)

Overview: TOTP is an extension of HOTP and generates OTPs based on the current time. This

means the generated OTP is valid only for a short time period, typically 30 seconds. TOTP is

widely used in two-factor authentication (2FA) systems.

Key Features:

 Time-dependent: The OTP is generated based on the current time and a shared

secret key.

 Short lifespan: OTPs are typically valid for a short duration (e.g., 30 seconds),

increasing security.

 Synchronization: Both the server and client must have synchronized clocks.

Algorithm:

1. Shared Secret (K): A shared secret key between the client and server.

2. Time Step (T): The length of time each OTP is valid, usually 30 seconds.

3. Current Time (C): The current Unix time divided by the time step, which creates a

time counter.

Steps:

1. Calculate the current time counter TC=⌊Current Unix Time/T⌋T_C = \lfloor

\text{Current Unix Time} / T \rfloorTC=⌊Current Unix Time/T⌋.

2. Compute the HMAC hash using the shared secret key and the time counter.

3. Extract a truncated value from the HMAC hash.

4. Generate the OTP by taking the truncated value modulo 10d10^d10d, where ddd is

the desired number of digits.

Example:

1. Shared Secret (K): JBSWY3DPEHPK3PXP

2. Time Step (T): 30 seconds

3. Current Time (C): Assume Unix time is 1627286400 (2021-07-26 00:00:00 UTC)

4. Calculate the time counter: TC=⌊1627286400/30⌋=54242880T_C = \lfloor

1627286400 / 30 \rfloor = 54242880TC=⌊1627286400/30⌋=54242880

Generating OTP:

 Compute HMAC-SHA1 hash: HMAC-SHA1(K, T_C)

 Assume hash result (in hexadecimal):

0x1f8698690e02ca16618550ef7f19da8e945b555a

 Extract dynamic truncation value: The last nibble of the hash gives an offset (0xA),

extracting 4 bytes starting at offset 10: 0x50ef7f19

 Convert to integer and modulo 10610^6106: 0x50ef7f19 (decimal 1357871129) mod

10610^6106 = 871129

Thus, the OTP is 871129.

b. HMAC-based OTP (HOTP)

Overview: HOTP generates OTPs based on a counter value. Each OTP is valid until used,

making it suitable for transaction-based authentication systems. The OTP changes only when

the counter increments.

Key Features:

 Counter-based: The OTP is generated using a counter value and a shared secret key.

 Event-driven: The OTP changes only when the counter is incremented, allowing

flexibility in time.

Algorithm:

1. Shared Secret (K): A shared secret key between the client and server.

2. Counter (C): An incremental counter value.

Steps:

1. Compute the HMAC hash using the shared secret key and the counter value.

2. Extract a truncated value from the HMAC hash.

3. Generate the OTP by taking the truncated value modulo 10d10^d10d, where ddd is

the desired number of digits.

Example:

1. Shared Secret (K): JBSWY3DPEHPK3PXP

2. Counter (C): 1

Generating OTP:

 Compute HMAC-SHA1 hash: HMAC-SHA1(K, C)

 Assume hash result (in hexadecimal):

0x4fd3b597b4a0f4dbd7d4cc6304c7aee34ed8b90c

 Extract dynamic truncation value: The last nibble of the hash gives an offset (0xC),

extracting 4 bytes starting at offset 12: 0x4cc6304c

 Convert to integer and modulo 10610^6106: 0x4cc6304c (decimal 1284756652) mod

10610^6106 = 756652

Thus, the OTP is 756652.

 TOTP: Generates time-based OTPs, providing high security by ensuring the OTP is

valid only for a short time period, requiring synchronized clocks between the client

and server.

 HOTP: Generates counter-based OTPs, suitable for event-driven scenarios where the

OTP remains valid until used, without needing synchronized time between client and

server.

