
01 Using the Python library Scapy, analyze the network packets associated with the suspicious IP address provided.
1. Packet Capture: Scapy can capture packets from the network interface in real-time.
2. Packet Dissection: Scapy can dissect packets and extract useful information such as source and destination IP addresses, ports, protocols, and payload.
3. Packet Filtering: Scapy allows filtering of packets based on specific criteria (e.g., IP address, protocol) to focus on relevant traffic.
4. Packet Crafting: Scapy can forge custom packets for testing and simulation purposes.

1. Install Scapy
To install the scapy we can go through this steps and if already installed we can check it by the following methods. We can access the scapy with the interactive terminal of python or by a python file and import the scapy and its sniffing function “sniff”.
	pip install scapy
#For systems that require administrator privileges, you may need to use sudo (Linux/macOS):
sudo pip install scapy
#Or, if you're using a virtual environment (which is recommended for Python projects):
python -m venv myenv
source myenv/bin/activate # On Windows use `myenv\Scripts\activate`
pip install scapy

Check the Installed Version

python
Copy code
import scapy
print(scapy.__version__)
Open a Python interpreter by typing python or python3 in your terminal or command prompt.

2. Capture Network Traffic and Store in a File:
To capture network traffic, we need to specify the network interface and set up a packet sniffer.

	from scapy.all import sniff, wrpcap, IP

Define the network interface
interface = "eth0"

Define the file to store captured packets
pcap_file = "captured_traffic.pcap"

Define a packet capture function
def packet_capture(packet):
 # Append packets to the file
 wrpcap(pcap_file, packet, append=True)
 print(f"Packet captured: {packet.summary()}")

Start packet capture (this will run indefinitely, stop manually)
sniff(iface=interface, prn=packet_capture, store=0)

3. Filter Packets by IP Address
To focus on traffic originating from a particular IP address, we want to use for filter
	from scapy.all import sniff

Define the network interface
interface = "eth0"

Define the suspicious IP address
suspicious_ip = "192.168.1.100"

Define a packet capture function
def packet_capture(packet):
 if packet.haslayer(IP):
 if packet[IP].src == suspicious_ip or packet[IP].dst == suspicious_ip:
 print(packet.summary())

Start packet capture
sniff(iface=interface, prn=packet_capture, store=0)

Step 4: Analyze Captured Packets
To analyze the captured packets in more detail.
	from scapy.all import sniff, IP, TCP, UDP

Define the network interface
interface = "eth0"

Define the suspicious IP address
suspicious_ip = "192.168.1.100"

Define a packet capture function
def packet_capture(packet):
 if packet.haslayer(IP):
 if packet[IP].src == suspicious_ip or packet[IP].dst == suspicious_ip:
 print(f"Packet: {packet.summary()}")
 print(f"Source IP: {packet[IP].src}")
 print(f"Destination IP: {packet[IP].dst}")
 if packet.haslayer(TCP):
 print(f"Source Port: {packet[TCP].sport}")
 print(f"Destination Port: {packet[TCP].dport}")
 print(f"TCP Flags: {packet[TCP].flags}")
 elif packet.haslayer(UDP):
 print(f"Source Port: {packet[UDP].sport}")
 print(f"Destination Port: {packet[UDP].dport}")

Start packet capture
sniff(iface=interface, prn=packet_capture, store=0)

Identification and Interpretation of Suspicious or Anomalous Network Behavior
Suspicious Indicators:
1. Unusual Port Activity: Traffic on uncommon ports might indicate malicious activity.
2. High Traffic Volume: A high volume of traffic from a single IP can suggest a DDoS attack or data exfiltration.
3. Irregular Protocol Usage: Use of unusual protocols might indicate an attempt to bypass network defenses.
4. Strange Payloads: Payloads containing suspicious data patterns or commands could indicate malware communication.

Expected Code: 1. Write a python code to Network Packet Analysis with Scapy

	from scapy.all import sniff, wrpcap, IP

Define the suspicious IP address
suspicious_ip = "192.168.1.100" # Replace with the actual suspicious IP address

Function to filter and analyze packets
def packet_callback(packet):
 if packet.haslayer(IP) and (packet[IP].src == suspicious_ip or packet[IP].dst == suspicious_ip):
 print(packet.summary())
 packet.show()

Capture packets and apply the callback function
packets = sniff(prn=packet_callback, count=100)

Save captured packets to a pcap file for further analysis
suspicious_packets = [pkt for pkt in packets if pkt.haslayer(IP) and (pkt[IP].src == suspicious_ip or pkt[IP].dst == suspicious_ip)]
wrpcap("suspicious_packets.pcap", suspicious_packets)

Question - 2
Steps to Develop the Detection System
1. Extract Features: Analyze various characteristics of the website URLs.
2. Prepare a Dataset: For training a model, you would typically use a dataset containing both phishing and legitimate websites.
3. Train a Model: Use a machine learning model to classify URLs based on extracted features.
4. Predict Phishing: Apply the trained model to new URLs to determine if they are phishing sites.
Prerequisites
Ensure that we have the necessary libraries installed. You can install them using pip:
	pip install scikit-learn pandas requests beautifulsoup4

Dependencies
1. numpy:
· Purpose: Provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
· Installation: pip install numpy
2. pandas:
· Purpose: Offers data structures and data analysis tools, particularly useful for handling and analyzing data in tabular form.
· Installation: pip install pandas
3. scikit-learn:
· Purpose: A machine learning library that provides simple and efficient tools for data mining and data analysis. It includes various algorithms for classification, regression, clustering, and dimensionality reduction.
· Installation: pip install scikit-learn
4. beautifulsoup4:
· Purpose: Used for web scraping purposes to parse HTML and XML documents. Though it's not used directly in the provided script, it is useful for more complex implementations that involve scraping website content.
· Installation: pip install beautifulsoup4
5. requests:
· Purpose: Allows you to send HTTP requests easily. While it's not used in the basic script, it's useful for fetching web pages to analyze content, which could be added in more advanced versions.
· Installation: pip install requests
Ensure Dependencies Are Installed: Make sure you have all necessary Python libraries installed.

Prepare the Script: Copy the entire script provided earlier into a Python file, say phishing_detection.py.
Run the Script: Execute the script from the command line or a Python environment. The script includes predefined URLs for testing. You can modify these URLs or add new ones to test other sites.
Test URLs: To test additional URLs, update the real_url and phishing_url variables in the script with the URLs you want to check. You can also adapt the script to take URLs as input.

	import re
from urllib.parse import urlparse
import requests

def extract_features(url):
 features = {}

 # URL length
 features['url_length'] = len(url)

 # HTTPS check
 features['https'] = url.startswith('https')

 # Check for the presence of suspicious keywords
 suspicious_keywords = ['login', 'secure', 'update', 'account']
 features['suspicious_keywords'] = any(keyword in url for keyword in suspicious_keywords)

 # Domain features
 parsed_url = urlparse(url)
 domain = parsed_url.netloc
 features['domain_length'] = len(domain)
 features['subdomain_count'] = len(domain.split('.')) - 1
 features['has_digits'] = bool(re.search(r'\d', domain))

 return features

def analyze_features(features):
 # Basic heuristics for phishing
 score = 0
 if features['url_length'] > 100:
 score += 1
 if not features['https']:
 score += 1
 if features['suspicious_keywords']:
 score += 1
 if features['subdomain_count'] > 2:
 score += 1
 if features['has_digits']:
 score += 1

 # Threshold for phishing detection
 return score >= 3

def fetch_url_content(url):
 try:
 response = requests.get(url, timeout=5)
 return response.text
 except requests.RequestException:
 return ''

def is_phishing(url):
 features = extract_features(url)
 # Analyze extracted features
 return analyze_features(features)

Example usage
real_url = 'https://www.example.com'
phishing_url = 'http://secure-login.example.com'

print(f"Real URL is phishing: {is_phishing(real_url)}")
print(f"Phishing URL is phishing: {is_phishing(phishing_url)}")

