

ASSIGNMENT - 1

NAME: KOTLA LAKSHMI PRIYANKA

COURSE: DATA SCIENCE AND GEN AI LLMS

HALL TICKET NO – 2406DGAL126

DATE: 29-10-2024

TABLE OF CONTENTS:

 TITLE PAGE NO

Question 1: Number Game between User and Computer 03

Question 2: Pascal Triangle using r-Combination Function 06

Question 3: Frequency Count of Repeated Elements in List 09

Question 4: Matrix Addition from a File 11

Question 5: Operator Overloading to Add Fractions 14

Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits
starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence,
starting from the max number played by the user. User enters the next 1 or 2 or 3 next digits in
sequence, starting from the max number played by the computer. Whoever reaches 20 first
wins the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

Code:

def nearest_multiple(num):
 """
 Returns the nearest multiple of 4 that is greater than or equal to the given
number.
 """
 if num >= 4:
 return num + (4 - (num % 4)) # Calculate the next multiple of 4
 else:
 return 4 # If the number is less than 4, return 4

def lose():
 """
 Displays a losing message and exits the game.
 """
 print("\n\nYOU LOSE!")
 print("Better luck next time!")
 exit(0) # Exit the program

def check_consecutive(xyz):
 """
 Checks if the numbers entered by the player are consecutive.
 Returns True if they are, otherwise False.
 """
 for i in range(1, len(xyz)):
 if xyz[i] - xyz[i - 1] != 1: # Check if each number differs by 1
 return False
 return True # All numbers are consecutive

def play_game():
 """
 Main function to play the number game between the user and the computer.
 """
 print("Number game between user and computer") # Introduction to the game
 numbers_played = [] # List to keep track of all numbers played
 last_number = 0 # Variable to store the last number played

 while True:
 print("Current numbers: ", numbers_played) # Display current numbers in
the game

 # Player's turn
 print("\nYour Turn.")
 user_input = int(input("How many numbers do you wish to enter (1-3)? "))

 if 1 <= user_input <= 3: # Validate the user's input

 print("Now enter the values:")
 player_numbers = [] # List to store the player's numbers
 for _ in range(user_input):
 number = int(input('> '))
 player_numbers.append(number) # Add the number to the player's
list
 numbers_played.append(number) # Add the number to the overall
game list
 last_number = number # Update the last number played

 # Check if the player entered consecutive numbers
 if not check_consecutive(player_numbers):
 print("\nYou did not input consecutive integers.")
 lose() # Player loses if numbers are not consecutive

 # Check if the player has reached or exceeded 20
 if last_number >= 20:
 print("\n\nCONGRATULATIONS!!! You've won!")
 break # Player wins and exits the game

 # Computer's turn
 computer_numbers = [] # List to store the computer's numbers
 computer_pick = min(3, 20 - last_number) # Calculate how many
numbers the computer can play
 for j in range(1, computer_pick + 1):
 computer_numbers.append(last_number + j) # Add computer's
numbers to the list
 numbers_played.append(last_number + j) # Update the overall
game list
 print("Computer played:", computer_numbers) # Show the numbers the
computer played
 last_number = numbers_played[-1] # Update the last number played

 # Check if the computer reached or exceeded 20
 if last_number >= 20:
 print("\nComputer Wins!!!")
 break # Computer wins and exits the game

 else:
 print("Invalid input. You can only enter 1, 2, or 3 numbers.")
 lose() # Player loses for invalid input

Entry point of the game
if __name__ == "__main__":
 play_game() # Start the game

Code Breakdown:

1. nearest_multiple Function

 - This function calculates the nearest multiple of 4 that is equal to or greater than the input
number.

 - If ‘num’ is already a multiple of 4, it returns ‘num’; otherwise, it finds the next multiple of
4 by calculating ‘num + (4 - (num % 4))’.

 - This function is not used in the current game logic but might be useful if we wanted specific
turn rules based on multiples of 4.

2. lose Function

 - This function displays a losing message to the player and then ends the game using ‘exit(0)’.

 - It’s called if the player enters non-consecutive numbers or an invalid input for the number
of entries (anything other than 1, 2, or 3).

3. check_consecutive Function

 - Takes a list ‘xyz’ (the player’s chosen numbers) and verifies if they are consecutive.

 - Returns ‘True’ if all numbers in the list differ by exactly 1; otherwise, returns ‘False’.

4. play_game Function

 - This is the main function that orchestrates the game between the user and the computer.

 - The game proceeds in a loop until one player reaches or exceeds 20.

1. Game Initialization:

 - ‘numbers_played’ keeps a record of all numbers entered by both the player and computer.

 - ‘last_number’ stores the last number entered, allowing the computer to continue from the
player’s last move.

2. Player’s Turn:

 - The player is prompted to enter how many numbers they’d like to play (between 1 and 3).

 - If the player’s input is valid, they enter that many consecutive numbers.

 - ‘check_consecutive’ validates that the entered numbers are indeed consecutive. If they are
not, the ‘lose’ function is called, ending the game with a loss message.

 - If the player’s last entered number reaches or exceeds 20, they win, and the game exits with
a victory message.

3. Computer’s Turn:

 - The computer plays a calculated number of consecutive numbers, limited to a maximum of
3 to give the player a fair chance.

 - The game checks if the computer’s last entered number reaches or exceeds 20; if so, the
computer wins, and the game exits with a win message for the computer.

 4. Invalid Input Handling:

 - If the player inputs a number of entries outside the range of 1-3, the game calls ‘lose’,
displaying a loss message and exiting.

Sample Output:

Number game between user and computer
Current numbers: []

Your Turn.
How many numbers do you wish to enter (1-3)? 2
Now enter the values:
> 1
> 2

Computer played: [3, 4]

Current numbers: [1, 2, 3, 4]

Your Turn.
How many numbers do you wish to enter (1-3)? 3
Now enter the values:
> 5
> 6
> 7
Computer played: [8, 9, 10]

Current numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Your Turn.
How many numbers do you wish to enter (1-3)? 2
Now enter the values:
> 11
> 12
Computer played: [13, 14, 15]

Current numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Your Turn.
How many numbers do you wish to enter (1-3)? 3
Now enter the values:
> 16
> 17
> 18
Computer played: [19, 20]

Computer Wins!!!

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use
this function to print pascal triangle, where number of rows is the input.

Code:

def calculate_factorial(number):
 """Calculate the factorial of a number."""
 if number == 0 or number == 1:
 return 1 # Factorial of 0 and 1 is 1
 result = 1
 for i in range(2, number + 1):
 result = i # Multiply result by each number up to 'number'
 return result

def calculate_combinations(n, r):
 """
 Calculate the number of ways to choose r items from n distinct items.
 This is often written as n choose r (nCr).
 """
 # If r is out of valid range, return 0
 if r < 0 or r > n:
 return 0
 # Calculate and return nCr using the factorial formula
 return calculate_factorial(n) // (calculate_factorial(r)
calculate_factorial(n - r))

def display_pascal_triangle(number_of_rows):
 """Print Pascal's Triangle with the specified number of rows."""
 for row in range(number_of_rows):
 # Print leading spaces for formatting
 print(" " (number_of_rows - row), end="")
 for column in range(row + 1):
 # Calculate and print nCr for the current position
 print(calculate_combinations(row, column), end=" ")
 print() # Move to the next line after each row

Main program execution
if __name__ == "__main__":
 # Ask the user for the number of rows for Pascal's Triangle
 rows = int(input("Enter the number of rows for Pascal's Triangle: "))
 # Display the triangle
 display_pascal_triangle(rows)

Code Breakdown:

1. calculate_factorial(number)

 - This function calculates the factorial of a given ‘number’.

 - If ‘number’ is 0 or 1, the function returns 1 since ‘0!’ and ‘1!’ are both defined as 1.

 - For other values, it calculates the factorial by multiplying all integers up to ‘number’.

2. calculate_combinations(n, r)

 - This function calculates the combinations, often denoted as (nCr), which is the number of
ways to choose ‘r’ items from ‘n’ distinct items.

 - The formula used is:

 nCr = frac{n!}{r!(n-r)!}

 - It uses the ‘calculate_factorial’ function to get the factorial values for ‘n’, ‘r’, and ‘n - r’.

 - If ‘r’ is out of range (e.g., less than 0 or greater than ‘n’), it returns 0.

3. display_pascal_triangle(number_of_rows)

 - This function prints Pascal's Triangle for a specified number of rows.

 - Each row represents combinations for that row's number, so for row ‘n’, it calculates the
combinations for (nC0, nC1, …., nCn).

 - Spaces are added to align the triangle shape visually.

4. Main Execution

 - The program prompts the user to enter the number of rows to display.

 - It then calls ‘display_pascal_triangle(rows)’ to print Pascal’s Triangle.

Sample Output:

For an input of ‘5’ rows, the output of Pascal’s Triangle would look like:

Enter the number of rows for Pascal's Triangle: 5
 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1

Each row corresponds to the coefficients in the expansion of ((a + b)^n) and demonstrates
the pattern of Pascal’s Triangle, where each number is the sum of the two directly above it.

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated
elements with frequency count in a list.

Code:

def count_frequencies(numbers):
 """Count the frequency of each element in the list."""
 frequency = {} # Dictionary to store element frequencies

 # Iterate through each number in the list
 for num in numbers:
 if num in frequency:
 frequency[num] += 1 # Increment the count if the number is already
in the dictionary
 else:
 frequency[num] = 1 # Initialize count for the number

 # Print the frequency of each element
 for element, count in frequency.items():
 print(f"Element {element} has come {count} times")

Main program execution
if __name__ == "__main__":
 # Read a list of numbers from the user
 user_input = input("Enter a list of numbers separated by commas: ")
 # Convert the input string into a list of integers
 numbers = list(map(int, user_input.split(',')))

 # Call the function to count frequencies and print results
 count_frequencies(numbers)

Code Breakdown:

1. count_frequencies(numbers)

 - This function takes a list of numbers as input and counts the frequency of each unique
number in the list.

 - Dictionary Usage: A dictionary named ‘frequency’ is used to store each number as a key
and its frequency (count) as the value.

 - Counting Frequency:

 - For each number in the list:

 - If it’s already in the dictionary, its count is incremented by 1.

 - If it’s not in the dictionary, it’s added with an initial count of 1.

 - After counting, it prints the frequency of each element in the format:

 "Element <number> has come <count> times".

2. Main Program Execution

 - It reads a list of numbers from the user as a comma-separated string.

 - The input is split by commas and converted into a list of integers.

 - Then, ‘count_frequencies(numbers)’ is called to display the frequencies.

Sample Output:

Enter a list of numbers separated by commas: 2,1,2,3,4,5,1,3,6,2,3,4

Element 2 has come 3 times
Element 1 has come 2 times
Element 3 has come 3 times
Element 4 has come 2 times
Element 5 has come 1 times
Element 6 has come 1 times

Question 4:-

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file
and perform the addition of Matrices A & B and Print the results.

Code:

def read_matrix_from_file(filename):
 # This function reads two matrices from a file and returns them as a tuple
 matrices = {}
 current_matrix = None # Keep track of which matrix we are reading

 with open(filename, 'r') as file: # Open the file in read mode
 for line in file:
 line = line.strip() # Remove any leading or trailing spaces
 if line.startswith('A='): # Check if this line is for Matrix A
 current_matrix = 'A' # Set current matrix to A
 continue
 elif line.startswith('B='): # Check if this line is for Matrix B
 current_matrix = 'B' # Set current matrix to B
 continue

 if current_matrix:
 # Convert the line of numbers into a list of integers
 row = list(map(int, line.split()))
 if current_matrix not in matrices:
 matrices[current_matrix] = [] # Create a list for the
current matrix
 matrices[current_matrix].append(row) # Add the row to the
current matrix

 return matrices['A'], matrices['B'] # Return both matrices

def add_matrices(matrix_a, matrix_b):
 # This function adds two 2x2 matrices
 result = [] # Create an empty list to hold the result
 for i in range(2): # There are 2 rows in the matrices
 # Add the corresponding elements from both matrices
 result_row = [matrix_a[i][j] + matrix_b[i][j] for j in range(2)]
 result.append(result_row) # Add the row to the result
 return result

def print_matrix(matrix, name):
 # This function prints the matrix in a readable format with its name
 print(f"Matrix {name}:")
 for row in matrix:
 print(' '.join(map(str, row))) # Join the numbers in the row with
spaces
 print() # Print a newline for better spacing

if __name__ == "__main__":
 filename = 'matrices.txt' # Specify the filename containing the matrices
 print("Reading matrices from", filename)

 # Read the matrices from the file
 matrix_a, matrix_b = read_matrix_from_file(filename)

 # Print the matrices before addition

 print_matrix(matrix_a, 'A') # Print Matrix A
 print_matrix(matrix_b, 'B') # Print Matrix B

 # Add the two matrices together
 result_matrix = add_matrices(matrix_a, matrix_b)

 # Print the resulting matrix
 print("Resultant Matrix after addition:")
 print_matrix(result_matrix, 'Result')

Code Breakdown:

1. read_matrix_from_file(filename)

 - This function reads matrices (A) and (B) from a file. Each matrix is identified by lines
starting with "A=" or "B=" in the file, followed by rows of numbers.

 - Process:

 - It reads each line, ignoring "A=" and "B=", and assigns the following rows to the
corresponding matrix.

 - Each line of numbers is converted into a list of integers, which represents a row in the
matrix.

 - It returns both matrices as a tuple: ‘(matrix A, matrix B)’.

2. add_matrices(matrix_a, matrix_b)

 - This function adds the two matrices (A) and (B), assuming they are both (2 X 2) matrices.

 - Process:

 - For each corresponding element in both matrices, it calculates the sum and stores it in a
new matrix called ‘result’.

 - The result matrix is returned.

3. print_matrix(matrix, name)

 - This function takes a matrix and a name, then prints the matrix with each row on a new line.

 - For example, "Matrix A:" is printed before showing each row of matrix (A).

4. Main Program Execution

 - Reads the matrices (A) and (B) from a file (‘matrices.txt’).

 - Prints matrices (A) and (B).

 - Adds the two matrices.

 - Prints the result of the addition.

Expected File Format (‘matrices.txt’): The file should look something like this:

A=
1 3
4 5

B=
1 2
3 4

Sample Output:

Reading matrices from matrices.txt
Matrix A:
1 2
3 4

Matrix B:
5 6
7 8

Resultant Matrix after addition:
Matrix Result:
6 8
10 12

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class
Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator

Code:

Function to return gcd of a and b
def gcd(a, b):
 if a == 0:
 return b
 return gcd(b % a, a)

Function to convert the obtained fraction into its simplest form
def lowest(den3, num3):
 common_factor = gcd(num3, den3)
 den3 = den3 // common_factor # Use integer division
 num3 = num3 // common_factor
 return num3, den3 # Return the simplified fraction

Function to add two fractions
def addFraction(num1, den1, num2, den2):
 den3 = gcd(den1, den2)
 den3 = (den1 * den2) // den3 # Use integer division
 num3 = (num1 * (den3 // den1)) + (num2 * (den3 // den2)) # Use integer
division
 return lowest(den3, num3) # Return the simplified fraction

if __name__ == "__main__":
 # Input first fraction
 num1 = int(input("Enter the numerator of the first fraction: "))
 den1 = int(input("Enter the denominator of the first fraction: "))

 # Input second fraction
 num2 = int(input("Enter the numerator of the second fraction: "))
 den2 = int(input("Enter the denominator of the second fraction: "))

 print(f"{num1}/{den1} + {num2}/{den2} is equal to ", end="")
 result_num, result_den = addFraction(num1, den1, num2, den2)
 print(f"{result_num}/{result_den}")

Code Breakdown:

Here's an explanation of the code with step-by-step details, including an example of the output
you might expect.

1. gcd(a, b)

 - This function calculates the greatest common divisor (GCD) of two numbers, (a) and (b),
using recursion.

 - If (a) is zero, it returns (b) as the GCD.

 - Otherwise, it recursively calls itself with parameters ‘b % a’ and ‘a’ to perform the Euclidean
algorithm.

2. lowest(den3, num3)

 - This function simplifies a fraction.

 - Process:

 - It calls ‘gcd(num3, den3)’ to find the common factor of the numerator and denominator.

 - Both the numerator and denominator are divided by this common factor to get the fraction
in its simplest form.

 - It returns the simplified numerator and denominator as a tuple.

3. addFraction(num1, den1, num2, den2)

 - This function adds two fractions with given numerators (‘num1’ and ‘num2’) and
denominators (‘den1’ and ‘den2’).

 - Process:

 - It first finds the GCD of the two denominators.

 - Then, it calculates the least common multiple (LCM) of the two denominators by dividing
the product of ‘den1’ and ‘den2’ by their GCD, which gives the common denominator for the
addition.

 - Each fraction is converted to this common denominator, and the resulting numerators are
added together.

 - The sum (numerator and denominator) is then simplified by calling ‘lowest(den3, num3)’.

 - It returns the simplified fraction.

4. Main Program Execution

 - Input the numerators and denominators for two fractions.

 - Prints the result of adding the two fractions.

Sample Output:

For example, let's say the input is:

Enter the numerator of the first fraction: 1
Enter the denominator of the first fraction: 2
Enter the numerator of the second fraction: 1
Enter the denominator of the second fraction: 3

Output is:

1/2 + 1/3 is equal to 5/6

