

ASSIGNMENT - 1

NAME: KOTLA LAKSHMI PRIYANKA

COURSE: DATA SCIENCE AND GEN AI LLMS

HALL TICKET NO – 2406DGAL126

DATE: 03-11-2024

TABLE OF CONTENTS:

 TITLE PAGE NO

Question 1: Number Game between User and Computer 03

Question 2: Pascal Triangle using r-Combination Function 07

Question 3: Frequency Count of Repeated Elements in List 09

Question 4: Matrix Addition from a File 11

Question 5: Operator Overloading to Add Fractions 14

Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits
starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence,
starting from the max number played by the user. User enters the next 1 or 2 or 3 next digits in
sequence, starting from the max number played by the computer. Whoever reaches 20 first
wins the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

Code:

def nearest_multiple(num):
 """Returns the nearest multiple of 4 greater than or equal to given
number."""
 if num >= 4:
 return num + (4 - (num % 4)) # Next multiple of 4
 else:
 return 4 # If num < 4, return 4

def lose():
 """Displays losing message and exits."""
 print("\n\nYOU LOSE!")
 print("Better luck next time!")
 exit(0)

def check_consecutive(xyz):
 """Checks if numbers are consecutive."""
 for i in range(1, len(xyz)):
 if xyz[i] - xyz[i - 1] != 1: # Not consecutive
 return False
 return True # All consecutive

def play_game():
 """Main function for number game."""
 print("Number game between user and computer")
 numbers_played = [] # Track played numbers
 last_number = 0

 while True:
 print("Current numbers:", numbers_played)

 # Player's turn
 print("\nYour Turn.")
 user_input = int(input("How many numbers do you wish to enter (1-3)? "))

 if 1 <= user_input <= 3:
 print("Enter the values:")
 player_numbers = [] # Player's numbers
 for _ in range(user_input):
 number = int(input('> '))
 player_numbers.append(number)
 numbers_played.append(number)
 last_number = number

 if not check_consecutive(player_numbers): # Check if consecutive
 print("\nYou did not input consecutive integers.")

 lose()

 if last_number >= 20: # Check if player won
 print("\n\nCONGRATULATIONS!!! You've won!")
 break

 # Computer's turn
 computer_numbers = []
 computer_pick = min(3, 20 - last_number) # Numbers computer can
play
 for j in range(1, computer_pick + 1):
 computer_numbers.append(last_number + j)
 numbers_played.append(last_number + j)
 print("Computer played:", computer_numbers)
 last_number = numbers_played[-1]

 if last_number >= 20: # Check if computer won
 print("\nComputer Wins!!!")
 break

 else:
 print("Invalid input. Enter 1, 2, or 3 numbers.")
 lose()

Start the game
if __name__ == "__main__":
 play_game()

Code Explanation:

1. ‘nearest_multiple’ Function

 - Finds the next multiple of 4 greater than or equal to ‘num’.

2. ‘lose’ Function

 - Shows a loss message and exits the game.

 - Called if the player enters non-consecutive numbers or chooses an invalid number of
entries (anything other than 1, 2, or 3).

3. ‘check_consecutive’ Function

 - Checks if the numbers in ‘xyz’ are consecutive.

 - Returns ‘True’ if consecutive, ‘False’ otherwise.

4. ‘play_game’ Function

 - Main game function that alternates turns between the player and computer until one
reaches 20 or more.

 - Game Setup:

 - ‘numbers_played’ keeps track of all numbers entered.

 - ‘last_number’ stores the last number played.

 - Player's Turn:

 - Player selects how many numbers to enter (1-3).

 - If the entries aren’t consecutive, ‘lose’ is called.

 - If the player reaches or exceeds 20, they win.

 - Computer's Turn:

 - Computer plays up to 3 consecutive numbers, starting from the last number.

 - If it reaches 20 or more, the computer wins.

 - Invalid Input:

 - If the player inputs a number of entries outside the range of 1-3, the game calls ‘lose’,
displaying a loss message and exiting.

Output:

Number game between user and computer
Current numbers: []

Your Turn.
How many numbers do you wish to enter (1-3)? 2
Now enter the values:
> 1
> 2
Computer played: [3, 4]

Current numbers: [1, 2, 3, 4]

Your Turn.
How many numbers do you wish to enter (1-3)? 3
Now enter the values:
> 5
> 6
> 7
Computer played: [8, 9, 10]

Current numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Your Turn.
How many numbers do you wish to enter (1-3)? 2
Now enter the values:
> 11
> 12
Computer played: [13, 14, 15]

Current numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Your Turn.
How many numbers do you wish to enter (1-3)? 3
Now enter the values:
> 16
> 17
> 18
Computer played: [19, 20]

Computer Wins!!!

Output Images:

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use
this function to print pascal triangle, where number of rows is the input.

Code:

def calculate_factorial(number):
 """Calculate factorial of a number."""
 if number == 0 or number == 1:
 return 1
 result = 1
 for i in range(2, number + 1):
 result = i # Multiply result by each number up to 'number'
 return result

def calculate_combinations(n, r):
 """Calculate combinations nCr."""
 if r < 0 or r > n:
 return 0
 return calculate_factorial(n) // (calculate_factorial(r)
calculate_factorial(n - r))

def display_pascal_triangle(number_of_rows):
 """Print Pascal's Triangle."""
 if number_of_rows <= 0:
 return # Exit if input is zero or negative

 for row in range(number_of_rows):
 print(" " (number_of_rows - row), end="") # Leading spaces
 for column in range(row + 1):
 print(calculate_combinations(row, column), end=" ")
 print() # New line after each row

Run the program
if __name__ == "__main__":
 rows = int(input("Enter the number of rows for Pascal's Triangle: "))
 display_pascal_triangle(rows)

Code Explanation:

1. calculate_factorial(number)

 - This function calculates the factorial of ‘number’.

 - If ‘number’ is 0 or 1, it returns 1 (since ‘0!’ and ‘1!’ are both 1).

 - For other numbers, it multiplies all integers up to ‘number’.

2. calculate_combinations(n, r)

 - Calculates combinations (nCr), representing the number of ways to choose ‘r’ items from
‘n’.

 - Formula: nCr = n! / (r! (n - r)!)

 - Uses calculate_factorial to get factorials for ‘n’, ‘r’, and ‘n - r’.

 - Returns 0 if ‘r’ is out of range (e.g., less than 0 or greater than ‘n’).

3. display_pascal_triangle(number_of_rows)

 - Prints Pascal's Triangle with ‘number_of_rows’ rows.

 - For each row ‘n’, it calculates combinations nC0, nC1, ..., nCn.

 - Adds spaces to format the triangle visually.

4. Main Execution

 - Prompts the user for the number of rows.

 - Calls display_pascal_triangle(rows) to print Pascal’s Triangle.

Output:

For an input of ‘5’ rows, the output of Pascal’s Triangle :

Enter the number of rows for Pascal's Triangle: 5
 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1

Outputs Image:

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated
elements with frequency count in a list.

Code:

def count_frequencies(numbers):
 """Count the frequency of each element in the list."""
 frequency = {} # Store frequencies

 # Count occurrences
 for num in numbers:
 if num in frequency:
 frequency[num] += 1 # Increment count
 else:
 frequency[num] = 1 # Initialize count

 # Print frequencies
 for element, count in frequency.items():
 print(f"Element {element} has come {count} times")

Main execution
if __name__ == "__main__":
 user_input = input("Enter a list of numbers separated by commas: ")
 if user_input.strip(): # Check if input is not empty
 numbers = list(map(int, user_input.split(','))) # Convert input to a
list of integers
 count_frequencies(numbers) # Count and print frequencies
 else:
 print("No input provided.") # Handle empty input

Code Explanation:

1. count_frequencies(numbers)

 - This function counts how often each unique number appears in a list.

 - It uses a dictionary called 'frequency' to store each number (as a key) and its count (as a
value).

 - Counting Logic:

 - For each number in the list:

 - If it's already in the dictionary, its count goes up by 1.

 - If it's not there, it gets added with a count of 1.

 - It prints each number and its frequency in the format:

 "Element <number> has come <count> times".

2. Main Program Execution

 - The program asks the user to input numbers as a comma-separated string.

 - It splits the string by commas and converts it into a list of integers.

 - Then, it calls 'count_frequencies(numbers)' to show the counts.

Output:

Enter a list of numbers separated by commas: 2,1,2,3,4,5,1,3,6,2,3,4

Element 2 has come 3 times
Element 1 has come 2 times
Element 3 has come 3 times
Element 4 has come 2 times
Element 5 has come 1 times
Element 6 has come 1 times

Outputs Image:

Question 4:-

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file
and perform the addition of Matrices A & B and Print the results.

Code:

def read_matrix_from_file(filename):
 # Read two matrices from a file and return them
 matrices = {}
 current_matrix = None # Track current matrix

 with open(filename, 'r') as file: # Open file
 for line in file:
 line = line.strip() # Clean line
 if line.startswith('A='): # Matrix A
 current_matrix = 'A'
 continue
 elif line.startswith('B='): # Matrix B
 current_matrix = 'B'
 continue

 if current_matrix:
 # Convert line to list of integers
 row = list(map(int, line.split()))
 if current_matrix not in matrices:
 matrices[current_matrix] = [] # Initialize list
 matrices[current_matrix].append(row) # Add row

 return matrices['A'], matrices['B'] # Return matrices

def add_matrices(matrix_a, matrix_b):
 # Add two 2x2 matrices
 result = [] # Resultant matrix
 for i in range(2): # Two rows
 # Sum corresponding elements
 result_row = [matrix_a[i][j] + matrix_b[i][j] for j in range(2)]
 result.append(result_row) # Add row to result
 return result

def print_matrix(matrix, name):
 # Print matrix with its name
 print(f"Matrix {name}:")
 for row in matrix:
 print(' '.join(map(str, row))) # Join row elements
 print() # Newline for spacing

if __name__ == "__main__":
 filename = 'matrices.txt' # File with matrices
 print("Reading matrices from", filename)

 # Read matrices from file
 matrix_a, matrix_b = read_matrix_from_file(filename)

 # Print matrices before addition
 print_matrix(matrix_a, 'A') # Matrix A
 print_matrix(matrix_b, 'B') # Matrix B

 # Add matrices
 result_matrix = add_matrices(matrix_a, matrix_b)

 # Print resultant matrix
 print("Resultant Matrix after addition:")
 print_matrix(result_matrix, 'Result')

Code Explanation:

1. read_matrix_from_file(filename)

 - Reads matrices (A) and (B) from a file. Lines starting with "A=" or "B=" indicate the matrix,
followed by rows of numbers.

 - It converts each row into a list of integers and assigns them to the respective matrix.

 - Returns both matrices as a tuple: (matrix A, matrix B).

2. add_matrices(matrix_a, matrix_b)

 - Adds two 2x2 matrices (A and B).

 - Calculates the sum of corresponding elements and stores them in a new matrix called
‘result’.

 - Returns the result matrix.

3. print_matrix(matrix, name)

 - Takes a matrix and its name, then prints the matrix with the name above it (e.g., "Matrix
A:").

4. Main Program Execution

 - Reads matrices (A) and (B) from a file called ‘matrices.txt’.

 - Prints both matrices.

 - Adds the matrices and prints the result.

Output:

Reading matrices from matrices.txt
Matrix A:
1 2
3 4

Matrix B:
5 6
7 8

Resultant Matrix after addition:
Matrix Result:
6 8
10 12

Outputs Image:

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class
Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator

Code:

Function to return gcd of a and b
def gcd(a, b):
 if a == 0:
 return b
 return gcd(b % a, a)

Function to convert the obtained fraction into its simplest form
def lowest(num3, den3):
 common_factor = gcd(abs(num3), abs(den3)) # Use absolute values for
GCD
 den3 = den3 // common_factor # Simplify denominator
 num3 = num3 // common_factor # Simplify numerator

 # Adjust the signs: if denominator is negative, flip the signs
 if den3 < 0:
 num3 = -num3
 den3 = -den3

 return num3, den3 # Return the simplified fraction

Function to add two fractions
def addFraction(num1, den1, num2, den2):
 den3 = (den1 den2) // gcd(den1, den2) # Calculate common denominator
 num3 = (num1 (den3 // den1)) + (num2 (den3 // den2)) # Calculate
numerator
 return lowest(num3, den3) # Ensure to simplify the fraction correctly

if __name__ == "__main__":
 # Input first fraction
 num1 = int(input("Enter the numerator of the first fraction: "))
 den1 = int(input("Enter the denominator of the first fraction: "))

 # Input second fraction
 num2 = int(input("Enter the numerator of the second fraction: "))
 den2 = int(input("Enter the denominator of the second fraction: "))

 print(f"{num1}/{den1} + {num2}/{den2} is equal to ", end="")
 result_num, result_den = addFraction(num1, den1, num2, den2)
 print(f"{result_num}/{result_den}")

Code Explanation:

1. gcd(a, b):

 - This function calculates the greatest common divisor (GCD) of two numbers ‘a’ and ‘b’
using recursion.

 - If ‘a’ is ‘0’, it returns ‘b’ (since the GCD of any number and 0 is the number itself).

 - Otherwise, it calls itself with ‘b % a’ and ‘a’ until it finds the GCD.

2. lowest(den3, num3):

 - This function simplifies a fraction.

 - It calculates the GCD of the numerator (‘num3’) and denominator (‘den3’).

 - It then divides both ‘num3’ and ‘den3’ by their GCD to simplify the fraction and returns
the simplified numerator and denominator.

3. addFraction(num1, den1, num2, den2):

 - This function adds two fractions.

 - It first calculates a common denominator (‘den3’) for the two fractions using the GCD to
ensure they can be combined.

 - It then calculates the new numerator (‘num3’) by adjusting both fractions to the common
denominator.

 - Finally, it simplifies the result using the ‘lowest’ function and returns the simplified
fraction.

4. Main Program Execution:

 - It prompts the user to enter the numerators and denominators of two fractions.

 - It calls the ‘addFraction’ function with the user-provided values to compute the sum.

 - Finally, it prints the result in a readable format.

Outputs Images:

