
Australian Housing Prices prediction By Abdul Wasay
This dataset can be used to predict hosing prices in Australia. This dataset can be used to find relationships between housing prices and location. This
dataset can be used to find relationships between housing prices and features such as size, number of bedrooms, and number of bathrooms

Hint: RealEstateAU_1000_Samples.csv file

Instructions:
1. Use Lifecycle of Data Sciece

2. Use necessary data Preprocess techniques
3. Use various Regression and Classification techniques for comparision

4. Use metrics for regression and classification when needed.
5. Use various Pipeline/Hyperparametr tuning techniques for improving performance

index TID breadcrumb category_name property_type building_size land_size preferred_size open_date listing_agency ... state zip_code

0 0 1350988
Buy>NT>DARWIN

CITY

Real Estate &
Property for

sale in DARWIN
CITY...

House NaN NaN NaN
Added 2

hours ago
Professionals -
DARWIN CITY

... NT 800

1 1 1350989
Buy>NT>DARWIN

CITY

Real Estate &
Property for

sale in DARWIN
CITY...

Apartment 171m²آ NaN 171m²آ
Added 7

hours ago

Nick Mousellis
Real Estate -
Eview Group

Member

... NT 800 4

2 2 1350990
Buy>NT>DARWIN

CITY

Real Estate &
Property for

sale in DARWIN
CITY...

Unit NaN NaN NaN
Added 22
hours ago

Habitat Real
Estate - THE

GARDENS
... NT 800

In [2]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

FileName = 'E:\DSPP\Assignments\JNTUH ML DL assignment 2\RealEstateAU_1000_Samples.xls'
dataset = pd.read_excel(FileName)

# Printing first 5 records of the dataset
dataset.head()

Out[2]:



index TID breadcrumb category_name property_type building_size land_size preferred_size open_date listing_agency ... state zip_code

3 3 1350991
Buy>NT>DARWIN

CITY

Real Estate &
Property for

sale in DARWIN
CITY...

House NaN NaN NaN
Added

yesterday
Ray White -
NIGHTCLIFF

... NT 800

4 4 1350992
Buy>NT>DARWIN

CITY

Real Estate &
Property for

sale in DARWIN
CITY...

Unit 201m²آ NaN 201m²آ
Added

yesterday

Carol Need
Real Estate -

Fannie Bay
... NT 800 4

5 rows × 27 columns

(1000, 27)

Categorical variables: 17
Integer variables: 0
Float variables: 5

In [3]: dataset.shape

Out[3]:

In [ ]: # Data Preprocessing
Categorize the features depending on their datatype (int, float, object) and then calculate the number of them. 

In [4]: obj = (dataset.dtypes == 'object')
object_cols = list(obj[obj].index)
print("Categorical variables:",len(object_cols))

int_ = (dataset.dtypes == 'int')
num_cols = list(int_[int_].index)
print("Integer variables:",len(num_cols))

fl = (dataset.dtypes == 'float')
fl_cols = list(fl[fl].index)
print("Float variables:",len(fl_cols))

In [ ]: # Exploratory Data Analysis (EDA)
EDA refers to the deep analysis of data so as to discover different patterns and spot anomalies. 
Before making inferences from data it is essential to examine all your variables.

Now let’s make a heatmap using seaborn library.

In [5]: plt.figure(figsize=(12, 6))
sns.heatmap(dataset.corr(), cmap = 'BrBG', fmt = '.2f', linewidths = 2, annot = True)



<AxesSubplot:>

<AxesSubplot:title={'center':'No. Unique values of Categorical Features'}>

Out[5]:

In [ ]: To analyze the different categorical features. Let’s draw the barplot.

In [6]: unique_values = []
for col in object_cols:
    unique_values.append(dataset[col].unique().size)
plt.figure(figsize=(10,6))
plt.title('No. Unique values of Categorical Features')
plt.xticks(rotation=90)
sns.barplot(x=object_cols,y=unique_values)

Out[6]:



In [ ]: The plot shows that Exterior1st has around 16 unique categories and other features have around  6 unique categories. 
To findout the actual count of each category we can plot the bargraph of each four features separately.

In [7]: plt.figure(figsize=(18, 36))
plt.title('Categorical Features: Distribution')
plt.xticks(rotation=90)
index = 1
 
for col in object_cols:
    y = dataset[col].value_counts()
    plt.subplot(11, 4, index)
    plt.xticks(rotation=90)
    sns.barplot(x=list(y.index), y=y)
    index += 1





Data Cleaning
Data Cleaning is the way to improvise the data or remove incorrect, corrupted or irrelevant data.

As in our dataset, there are some columns that are not important and irrelevant for the model training. So, we can drop that column before training.
There are 2 approaches to dealing with empty/null values

We can easily delete the column/row (if the feature or record is not much important). Filling the empty slots with mean/mode/0/NA/etc. (depending on
the dataset requirement). As Id Column will not be participating in any prediction. So we can Drop it.

Replacing SalePrice empty values with their mean values to make the data distribution symmetric.

Drop records with null values (as the empty records are very less).

Checking features which have null values in the new dataframe (if there are still any).

TID                0
breadcrumb         0
category_name      0
property_type      0
building_size      0
land_size          0
preferred_size     0
open_date          0
listing_agency     0
price              0
location_number    0
location_type      0
location_name      0
address            0

In [ ]:  

In [9]: dataset.drop(['index'],
             axis=1,
             inplace=True)

In [ ]: dataset['price'] = dataset['price'].fillna(
    dataset['price'].mean())

In [10]: new_dataset = dataset.dropna()

In [11]: new_dataset.isnull().sum()

Out[11]:



address_1          0
city               0
state              0
zip_code           0
phone              0
latitude           0
longitude          0
product_depth      0
bedroom_count      0
bathroom_count     0
parking_count      0
RunDate            0
dtype: int64

OneHotEncoder – For Label categorical features: One hot Encoding is the best way to convert categorical data into binary vectors. This maps the values
to integer values. By using OneHotEncoder, we can easily convert object data into int. So for that, firstly we have to collect all the features which have

the object datatype. To do so, we will make a loop.

Categorical variables:
['breadcrumb', 'category_name', 'property_type', 'building_size', 'land_size', 'preferred_size', 'open_date', 'listing_agency', 'pri
ce', 'location_type', 'location_name', 'address', 'address_1', 'city', 'state', 'phone', 'product_depth']
No. of. categorical features:  17

Splitting Dataset into Training and Testing X and Y splitting (i.e. Y is the Price column and the rest of the other columns are X)

In [13]: from sklearn.preprocessing import OneHotEncoder
 
s = (new_dataset.dtypes == 'object')
object_cols = list(s[s].index)
print("Categorical variables:")
print(object_cols)
print('No. of. categorical features: ',
      len(object_cols))

In [ ]: # Once we have a list of all the features. We can apply OneHotEncoding to the whole list.

In [ ]: OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols = pd.DataFrame(OH_encoder.fit_transform(new_dataset[object_cols]))
OH_cols.index = new_dataset.index
OH_cols.columns = OH_encoder.get_feature_names()
df_final = new_dataset.drop(object_cols, axis=1)
df_final = pd.concat([df_final, OH_cols], axis=1)

In [ ]: from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
 
X = df_final.drop(['price'], axis=1)
Y = df_final['price']



Model and Accuracy As we have to train the model to determine the continuous values, so we will be using these regression models.

SVM-Support Vector Machine
Random Forest Regressor

Linear Regressor And To calculate loss we will be using the mean_absolute_percentage_error module. It can easily be imported by using sklearn
library. The formula for Mean Absolute

SVM – Support vector Machine SVM can be used for both regression and classification model. It finds the hyperplane in the n-dimensional plane.

Random Forest Regression Random Forest is an ensemble technique that uses multiple of decision trees and can be used for both regression and
classification tasks.

Linear Regression Linear Regression predicts the final output-dependent value based on the given independent features. Like, here we have to predict
Price depending on features like building_size, land_size, preferred_size, product_depth, bedroom_count, bathroom_count, parking_count etc.

 
# Split the training set into
# training and validation set
X_train, X_valid, Y_train, Y_valid = train_test_split(
    X, Y, train_size=0.8, test_size=0.2, random_state=0)

In [ ]: from sklearn import svm
from sklearn.svm import SVC
from sklearn.metrics import mean_absolute_percentage_error
 
model_SVR = svm.SVR()
model_SVR.fit(X_train,Y_train)
Y_pred = model_SVR.predict(X_valid)
 
print(mean_absolute_percentage_error(Y_valid, Y_pred))

In [ ]: 0.18705129

In [ ]: from sklearn.ensemble import RandomForestRegressor
 
model_RFR = RandomForestRegressor(n_estimators=10)
model_RFR.fit(X_train, Y_train)
Y_pred = model_RFR.predict(X_valid)
 
mean_absolute_percentage_error(Y_valid, Y_pred)

In [ ]: 0.1929469



Conclusion Clearly, SVM model is giving better accuracy as the mean absolute error is the least among all the other regressor models i.e. 0.18 approx.

To get much better results ensemble learning techniques like Bagging and Boosting can also be used.

In [ ]: from sklearn.linear_model import LinearRegression
 
model_LR = LinearRegression()
model_LR.fit(X_train, Y_train)
Y_pred = model_LR.predict(X_valid)
 
print(mean_absolute_percentage_error(Y_valid, Y_pred))

In [ ]: 0.187416838

In [ ]:  


