Australian Housing Prices prediction By Abdul Wasay

This dataset can be used to predict hosing prices in Australia. This dataset can be used to find relationships between housing prices and location. This dataset can be used to find relationships between housing prices and features such as size, number of bedrooms, and number of bathrooms

Hint: RealEstateAU_1000_Samples.csv file

Instructions:

- 1. Use Lifecycle of Data Sciece
- 2. Use necessary data Preprocess techniques
- 3. Use various Regression and Classification techniques for comparision
- 4. Use metrics for regression and classification when needed.
- 5. Use various Pipeline/Hyperparametr tuning techniques for improving performance

In [2]:

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

FileName = 'E:\DSPP\Assignments\JNTUH ML DL assignment 2\RealEstateAU_1000_Samples.xls'
dataset = pd.read_excel(FileName)

```
# Printing first 5 records of the dataset
dataset.head()
```

Out[2]:	in	dex	TID	breadcrumb	category_name	property_type	building_size	land_size	preferred_size	open_date	listing_agency	••••	state	zip_code
	0	0	1350988	Buy>NT>DARWIN CITY	Real Estate & Property for sale in DARWIN CITY	House	NaN	NaN	NaN	Added 2 hours ago	Professionals - DARWIN CITY		NT	800
	1	1	1350989	Buy>NT>DARWIN CITY	Real Estate & Property for sale in DARWIN CITY	Apartment	171m²ľ	NaN	171m²ľ	Added 7 hours ago	Nick Mousellis Real Estate - Eview Group Member		NT	800
	2	2	1350990	Buy>NT>DARWIN CITY	Real Estate & Property for sale in DARWIN CITY	Unit	NaN	NaN	NaN	Added 22 hours ago	Habitat Real Estate - THE GARDENS		NT	800

	ind	ex	TID	breadcrum	category_name	property_type	building_size	land_size	preferred_size	open_date	listing_agency	•••	state	zip_code
3		3	1350991	Buy>NT>DARWII CIT	Real Estate & N Property for Y sale in DARWIN CITY	House	NaN	NaN	NaN	Added yesterday	Ray White - NIGHTCLIFF		NT	800
4		4	1350992	Buy>NT>DARWI CIT	Real Estate & N Property for Y sale in DARWIN CITY	Unit	201m²ľ	NaN	201m²ľ	Added yesterday	Carol Need Real Estate - Fannie Bay		NT	800 4
5 r	rows	× 2	7 colum	ns										
4	data	set	shape											b.
(2	1000	, 27	7)											
#	<i># Da</i> Cate	<i>ta F</i> gori	P <i>reproce</i> ize the	essing features depen	ding on their d	atatype (int,	float, obje	ect) and t	then calculat	e the numb	er of them.			
c c F	obj obje prin	= (a ct_a t("(dataset cols = 1 Categori	.dtypes == 'obj list(obj[obj].i ical variables:	ect') ndex) ",len(object_co	ls))								
i r F	int_ num_ prin	= (cols t("]	(dataset s = list Integer	t.dtypes == 'in t(int_[int_].in variables:",le	t') dex) n(num_cols))									
+ + F	fl = fl_c prin	(da ols t("F	ataset.c = list(=loat va	<pre>dtypes == 'floa (f1[f1].index) ariables:",len(</pre>	t') fl_cols))									
Ca In F:	ateg nteg loat	orio er v vai	cal var: variable riables	iables: 17 es: 0 : 5										
# E E	# Ex EDA Befo	p <i>lor</i> refe re m	ratory L ers to t naking i	Data Analysis (the deep analys inferences from	<i>EDA)</i> is of data so a data it <mark>is</mark> ess	s to discover ential to exa	• different p mine all you	atterns a r variabi	and spot anom les.	alies.				
ſ	Now	let	's make	a heatmap usin	g seaborn libra	ry.								
	plt. sns.	figu heat	ure(figs tmap(dat	size=(12, 6)) taset.corr(), c	map = 'BrBG', f	mt = '.2f', 1	inewidths =	2, annot	= True)					

Out[5]: <AxesSubplot:>

In []: To analyze the different categorical features. Let's draw the barplot.

```
In [6]: unique_values = []
for col in object_cols:
    unique_values.append(dataset[col].unique().size)
    plt.figure(figsize=(10,6))
    plt.title('No. Unique values of Categorical Features')
    plt.xticks(rotation=90)
    sns.barplot(x=object cols,y=unique values)
```

Out[6]: <AxesSubplot:title={'center':'No. Unique values of Categorical Features'}>

In []: The plot shows that Exterior1st has around 16 unique categories and other features have around 6 unique categories. To findout the actual count of each category we can plot the bargraph of each four features separately.

```
In [7]: plt.figure(figsize=(18, 36))
plt.title('Categorical Features: Distribution')
plt.xticks(rotation=90)
index = 1
for col in object_cols:
    y = dataset[col].value_counts()
    plt.subplot(11, 4, index)
    plt.xticks(rotation=90)
    sns.barplot(x=list(y.index), y=y)
    index += 1
```


Ē

Data Cleaning

Data Cleaning is the way to improvise the data or remove incorrect, corrupted or irrelevant data.

As in our dataset, there are some columns that are not important and irrelevant for the model training. So, we can drop that column before training. There are 2 approaches to dealing with empty/null values

We can easily delete the column/row (if the feature or record is not much important). Filling the empty slots with mean/mode/0/NA/etc. (depending on the dataset requirement). As Id Column will not be participating in any prediction. So we can Drop it.

Replacing SalePrice empty values with their mean values to make the data distribution symmetric.

Drop records with null values (as the empty records are very less).

```
In [10]: new_dataset = dataset.dropna()
```

Checking features which have null values in the new dataframe (if there are still any).

In [11]:	<pre>new_dataset.isnull().sum()</pre>									
Out[11]:	TID	0								
	breadcrumb	0								
	category_name	0								
	property_type	0								
	building_size	0								
	land_size	0								
	preferred_size	0								
	open_date	0								
	listing agency	0								
	price	0								
	location number	0								
	location type	0								
	location name	0								
	address	0								

0 address 1 0 city 0 state 0 zip code 0 phone latitude 0 longitude 0 product depth 0 bedroom count 0 bathroom count 0 0 parking count RunDate 0 dtype: int64

OneHotEncoder – For Label categorical features: One hot Encoding is the best way to convert categorical data into binary vectors. This maps the values to integer values. By using OneHotEncoder, we can easily convert object data into int. So for that, firstly we have to collect all the features which have the object datatype. To do so, we will make a loop.

```
from sklearn.preprocessing import OneHotEncoder
In [13]:
          s = (new dataset.dtypes == 'object')
          object cols = list(s[s].index)
          print("Categorical variables:")
          print(object cols)
          print('No. of. categorical features: ',
                len(object cols))
         Categorical variables:
         ['breadcrumb', 'category name', 'property type', 'building size', 'land size', 'preferred size', 'open date', 'listing agency', 'pri
         ce', 'location type', 'location name', 'address', 'address 1', 'city', 'state', 'phone', 'product depth']
         No. of. categorical features: 17
          # Once we have a list of all the features. We can apply OneHotEncoding to the whole list.
 In [ ]:
In [ ]:
          OH encoder = OneHotEncoder(handle unknown='ignore', sparse=False)
          OH cols = pd.DataFrame(OH encoder.fit transform(new dataset[object cols]))
          OH cols.index = new dataset.index
```

OH_cols.columns = OH_encoder.get_feature_names()
df_final = new_dataset.drop(object_cols, axis=1)
df final = pd.concat([df final, OH cols], axis=1)

Splitting Dataset into Training and Testing X and Y splitting (i.e. Y is the Price column and the rest of the other columns are X)

In []: from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split

```
X = df_final.drop(['price'], axis=1)
Y = df_final['price']
```

Split the training set into
training and validation set
X_train, X_valid, Y_train, Y_valid = train_test_split(
 X, Y, train size=0.8, test size=0.2, random state=0)

Model and Accuracy As we have to train the model to determine the continuous values, so we will be using these regression models.

- SVM-Support Vector Machine
- Random Forest Regressor
- Linear Regressor And To calculate loss we will be using the mean_absolute_percentage_error module. It can easily be imported by using sklearn library. The formula for Mean Absolute

SVM – Support vector Machine SVM can be used for both regression and classification model. It finds the hyperplane in the n-dimensional plane.

```
In []: from sklearn import svm
from sklearn.svm import SVC
from sklearn.metrics import mean_absolute_percentage_error
model_SVR = svm.SVR()
model_SVR.fit(X_train,Y_train)
Y_pred = model_SVR.predict(X_valid)
```

```
print(mean_absolute_percentage_error(Y_valid, Y_pred))
```

In []: 0.18705129

Random Forest Regression Random Forest is an ensemble technique that uses multiple of decision trees and can be used for both regression and classification tasks.

In []: from sklearn.ensemble import RandomForestRegressor

```
model_RFR = RandomForestRegressor(n_estimators=10)
model_RFR.fit(X_train, Y_train)
Y_pred = model_RFR.predict(X_valid)
```

mean_absolute_percentage_error(Y_valid, Y_pred)

In []: 0.1929469

Linear Regression Linear Regression predicts the final output-dependent value based on the given independent features. Like, here we have to predict Price depending on features like building_size, land_size, preferred_size, product_depth, bedroom_count, bathroom_count, parking_count etc. In []: from sklearn.linear_model import LinearRegression

```
model_LR = LinearRegression()
model_LR.fit(X_train, Y_train)
Y_pred = model_LR.predict(X_valid)
```

print(mean_absolute_percentage_error(Y_valid, Y_pred))

In []: 0.187416838

Conclusion Clearly, SVM model is giving better accuracy as the mean absolute error is the least among all the other regressor models i.e. 0.18 approx. To get much better results ensemble learning techniques like Bagging and Boosting can also be used.

In []: