

Dr. C. Syamsundar
Assistant Professor and Dean R&D,
Department of Mechanical Engineering,
CMR Engineering College (UGC Autonomous),
Hyderabad 501 401, INDIA.

Question 1:
Number game between user and computer. The user starts by entering either 1 or 2 or
3 digits starting from 1 sequentially. The computer can return either 1 or 2 or 3 next
digits in sequence, starting from the max number played by the user. User enters the
next 1 or 2 or 3 next digits in sequence, starting from the max number played by the
computer. Whoever reaches 20 first wins the game.

Note:
- the numbers should be in sequence starting from 1.
- minimum number user or computer should pick is at least 1 digit in sequence
- maximum number user or computer can pick only 3 digits in sequence

Example 1:

Player: 1 2
Computer played: [3, 4]
Player: 5 6 7
Computer played: [8, 9]
Player: 10
Computer played: [11, 12, 13]
Player: 14 15
Computer played: [16, 17, 18]
Player: 19 20
Player Wins!!!

Example 2:

Player: 1
Computer played: [2, 3]
Player: 4 5
Computer played: [6, 7, 8]
Player: 9 10
Computer played: [11]
Player: 12
Computer played: [13]
Player: 14 15
Computer played: [16]
Player: 17 18
Computer played: [19, 20]
Computer Wins!!!

Algorithm
1. Initialize Game State:

o Set a counter current_number to keep track of the last number played.

o Set MAX_NUMBER to 20, which is the target number to win.

2. Define Functions for Turns:

o Define a function for the user turn that accepts a sequence input and

validates it.

o Define a function for the computer turn that generates a sequence based

on a simple strategy.

3. Game Loop:

o Alternate turns between user and computer, updating current_number

each time.

o Check after each turn if the last number reached is 20. If so, end the

game and declare the winner.

Program

import random

def user_turn(current_number):

 while True:

 try:

 user_input = input(f"Enter 1, 2, or 3 numbers starting from {current_number + 1}: ")

 # Split input into a list of integers

 user_sequence = list(map(int, user_input.split()))

 # Validate the sequence length and the sequence continuity

 if 1 <= len(user_sequence) <= 3 and user_sequence[0] == current_number + 1 and all(

 user_sequence[i] == user_sequence[i - 1] + 1 for i in range(1, len(user_sequence))):

 return user_sequence[-1] # Return the last number in the sequence

 else:

 print("Invalid sequence, please try again.")

 except ValueError:

 print("Invalid input, enter numbers separated by spaces.")

def computer_turn(current_number):

 # Computer strategy: pick 1 to 3 numbers to get closer to 20 but avoid letting user win

 max_pick = min(3, 20 - current_number)

 computer_sequence = list(range(current_number + 1, current_number + 1 + max_pick))

 print(f"Computer picks: {' '.join(map(str, computer_sequence))}")

 return computer_sequence[-1] # Return the last number in the sequence

def play_game():

 current_number = 0

 MAX_NUMBER = 20

 while current_number < MAX_NUMBER:

 # User's turn

 print("\nYour turn:")

 current_number = user_turn(current_number)

 if current_number >= MAX_NUMBER:

 print("Congratulations! You reached 20 and won the game!")

 return

 # Computer's turn

 print("\nComputer's turn:")

 current_number = computer_turn(current_number)

 if current_number >= MAX_NUMBER:

 print("Computer reached 20 and won the game. Better luck next time!")

 return

Start the game

play_game()

Output -1:

Output -2:

Question 2:
Develop a function called ncr(n,r) which computes r-combinations of n-distinct
object . use this function to print pascal triangle, where number of rows is the
input

Program:
Function to compute nCr
def ncr(n, r):

 if r > n:
 return 0
 if r == 0 or r == n:
 return 1

 # Calculate factorial
 numerator = 1
 denominator = 1
 for i in range(r):
 numerator *= (n - i)
 denominator *= (i + 1)
 return numerator // denominator # Integer division

Function to print Pascal's Triangle using nCr
def print_pascals_triangle(rows):
 for n in range(rows):

 # Print leading spaces for triangle shape
 print(" " * (rows - n), end="")

 # Print each number in the row using nCr
 for r in range(n + 1):
 print(ncr(n, r), end=" ")
 print() # Move to the next line

Input for number of rows
rows = int(input("Enter the number of rows for Pascal's Triangle: "))
print_pascals_triangle(rows)

Output:

Question 3:
Read a list of n numbers during runtime. Write a Python program to print the
repeated elements with frequency count in a list.

Example :
Input: [2, 1, 2, 3, 4, 5, 1, 3, 6, 2, 3, 4]
Output:
Element 2 has come 3 times
Element 1 has come 2 times
Element 3 has come 2 times
Element 4 has come 2 times
Element 1 has come 1 times
Element 6 has come 1 times

Program:
Function to count frequencies of elements in the list
def count_frequencies(lst):
 frequency = { }

 # Count occurrences of each element
 for num in lst:
 if num in frequency:
 frequency[num] += 1
 else:
 frequency[num] = 1

 # Print each element with its frequency count
 for num, count in frequency.items():
 print(f"Element {num} has come {count} times")

Input: list of numbers from user
numbers = list(map(int, input("Enter numbers separated by spaces: ").split()))

Call function to count and print frequencies
count_frequencies(numbers)

Output:

Question 4:
Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2
from a file and perform the addition of Matrices A & B and Print the results.

Program:
Function to read a 2x2 matrix from the file
def read_matrix(file, label):
 matrix = []
 for line in file:
 if line.strip() == label:
 for _ in range(2):
 row = list(map(int, file.readline().split()))
 matrix.append(row)
 break
 return matrix

Function to add two 2x2 matrices
def add_matrices(A, B):
 result = [[0, 0], [0, 0]]
 for i in range(2):
 for j in range(2):
 result[i][j] = A[i][j] + B[i][j]
 return result

Reading matrices from file
with open("matrices.txt", "r") as file:
 matrix_A = read_matrix(file, "Matrix A:")
 matrix_B = read_matrix(file, "Matrix B:")

Perform matrix addition
result_matrix = add_matrices(matrix_A, matrix_B)

Print the result
print("Resultant Matrix after Addition:")
for row in result_matrix:
 print(" ".join(map(str, row)))

Output:
Matrix A:
1 2
3 4

Matrix B:
5 6
7 8

Resultant Matrix after Addition:
6 8
10 12

Question 5:
Write a program that overloads the + operator so that it can add two objects of
the class Fraction. Fraction can be considered of the for P/Q where P is the
numerator and Q is the denominator

Program:
import math

class Fraction:
 def __init__(self, numerator, denominator):
 self.numerator = numerator
 self.denominator = denominator
 self._simplify() # Simplify upon creation

 def _simplify(self):
 """Simplify the fraction by dividing both numerator and denominator by their
GCD."""
 gcd = math.gcd(self.numerator, self.denominator)
 self.numerator //= gcd
 self.denominator //= gcd

 def __add__(self, other):
 """Overload the + operator to add two Fraction objects."""
 if isinstance(other, Fraction):
 # Calculate the numerator and denominator for the result
 result_numerator = (self.numerator * other.denominator) + (other.numerator *
self.denominator)
 result_denominator = self.denominator * other.denominator
 return Fraction(result_numerator, result_denominator) # Return a new simplified
Fraction
 else:
 raise TypeError("Operands must be instances of Fraction class")

 def __str__(self):
 """String representation of the fraction."""
 return f"{self.numerator}/{self.denominator}"

Example usage
f1 = Fraction(1, 4)
f2 = Fraction(5, 4)
result = f1 + f2
print("Result of addition:", result)

Output:

