
Name: VEMULA SHALINI

H.No: 2406DGAL122

**

Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits

starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence,

starting from the max number played by the user. User enters the next 1 or 2 or 3 next digits in

sequence, starting from the max number played by the computer. Whoever reaches 20 first wins

the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

Example 1:

Player: 1 2

Computer played: [3, 4]

Player: 5 6 7

Computer played: [8, 9]

Player: 10

Computer played: [11, 12, 13]

Player: 14 15

Computer played: [16, 17, 18]

Player: 19 20

Player Wins!!!

import random

def computer_play(current_number):

 # Computer chooses 1 to 3 numbers in sequence

 count = random.randint(1, 3)

 moves = list(range(current_number + 1, current_number + count + 1))

 return moves

def user_input(current_number):

 while True:

 try:

 user_moves = list(map(int, input("Your turn (enter 1 to 3 numbers in sequence):

").split()))

 # Check if moves are in the correct sequence

 if len(user_moves) >= 1 and len(user_moves) <= 3 and user_moves[0] ==

current_number + 1 and all(

 user_moves[i] == user_moves[i - 1] + 1 for i in range(1, len(user_moves))

):

 return user_moves

 else:

 print(f"Please enter 1 to 3 sequential numbers starting from {current_number +

1}.")

 except ValueError:

 print("Invalid input, please enter numbers only.")

def play_game():

 current_number = 0

 while current_number < 20:

 # User's turn

 user_moves = user_input(current_number)

 current_number = user_moves[-1]

 print(f"Player played: {user_moves}")

 if current_number >= 20:

 print("Player Wins!!!")

 break

 # Computer's turn

 computer_moves = computer_play(current_number)

 current_number = computer_moves[-1]

 print(f"Computer played: {computer_moves}")

 if current_number >= 20:

 print("Computer Wins!!!")

 break

play_game()

Example 2:

Player: 1

Computer played: [2, 3]

Player: 4 5

Computer played: [6, 7, 8]

Player: 9 10

Computer played: [11]

Player: 12

Computer played: [13]

Player: 14 15

Computer played: [16]

Player: 17 18

Computer played: [19, 20]

Computer Wins!!!

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this

function to print pascal triangle, where number of rows is the input.

Code:

Function to calculate nCr (combinations)

def factorial(x):

 if x == 0 or x == 1:

 return 1

 else:

 result = 1

 for i in range(2, x + 1):

 result *= i

 return result

def ncr(n, r):

 return factorial(n) // (factorial(r) * factorial(n - r))

Function to print Pascal's Triangle

def print_pascals_triangle(rows):

 for n in range(rows):

 row = []

 for r in range(n + 1):

 row.append(ncr(n, r))

 # Print row centered to form a triangle shape

 print(" " * (rows - n), *row)

Input number of rows for Pascal's Triangle

rows = int(input())

print_pascals_triangle(rows)

sample input: 5

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated elements

with frequency count in a list.

Example :

Input:- [2,1,2,3,4,5,1,3,6,2,3,4]

Output:-

Element 2 has come 3 times

Element 1 has come 2 times

Element 3 has come 2 times

Element 4 has come 2 times

Element 1 has come 1 times

Element 6 has come 1 times

Code 3:

arr = eval(input())

mapp = {}

for i in arr:

 mapp[i] = mapp.get(i,0) + 1

for key, val in mapp.items():

 print(f'Elements {key} has come {val} times')

Question 4:-

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and

perform the addition of Matrices A & B and Print the results.

Code:

def read_matrix():

 matrix = []

 print("Enter the matrix (2x2):")

 for _ in range(2):

 row = list(map(int, input().split()))

 matrix.append(row)

 return matrix

Function to add two 2x2 matrices

def add_matrices(A, B):

 result = [[0, 0], [0, 0]]

 for i in range(2):

 for j in range(2):

 result[i][j] = A[i][j] + B[i][j]

 return result

Function to print a matrix

def print_matrix(matrix):

 for row in matrix:

 print(row)

Read matrices from user input

print("Matrix A:")

matrix_A = read_matrix()

print("Matrix B:")

matrix_B = read_matrix()

Add matrices A and B

result_matrix = add_matrices(matrix_A, matrix_B)

Print the result

print("\nResult of A + B:")

print_matrix(result_matrix)

sample input:

2 5

4 10

15 4

10 5

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator

Program:

from math import gcd

class Fraction:

 def __init__(self, numerator, denominator):

 self.numerator = numerator

 self.denominator = denominator

 self.simplify()

 def __add__(self, other):

 # Find the numerator and denominator of the result

 new_numerator = self.numerator * other.denominator + other.numerator * self.denominator

 new_denominator = self.denominator * other.denominator

 return Fraction(new_numerator, new_denominator)

 def simplify(self):

 # Simplify the fraction by dividing by the greatest common divisor

 common_divisor = gcd(self.numerator, self.denominator)

 self.numerator //= common_divisor

 self.denominator //= common_divisor

 def __str__(self):

 # Return a string representation of the fraction

 return f"{self.numerator}/{self.denominator}"

Example usage

frac1 = Fraction(1, 2)

frac2 = Fraction(1, 3)

result = frac1 + frac2

print("Result of addition:", result) # Output: Result of addition: 5/6

