
ASSIGNMENT 01

Name: Kodurupaka Rajesh

Hall Ticket Number: 2406DGAL153

Mail id: rajesh.kluniversity@gmail.com

Mobile number: 9133245888

Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits

starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence,

starting from the max number played by the user. User enters the next 1 or 2 or 3 next digits in

sequence, starting from the max number played by the computer. Whoever reaches 20 first wins

the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

Example 1:

Player: 1 2

Computer played: [3, 4]

Player: 5 6 7

Computer played: [8, 9]

Player: 10

Computer played: [11, 12, 13]

Player: 14 15

Computer played: [16, 17, 18]

Player: 19 20

Player Wins!!!

mailto:rajesh.kluniversity@gmail.com

Example 2:

Player: 1

Computer played: [2, 3]

Player: 4 5

Computer played: [6, 7, 8]

Player: 9 10

Computer played: [11]

Player: 12

Computer played: [13]

Player: 14 15

Computer played: [16]

Player: 17 18

Computer played: [19, 20]

Computer Wins!!!

ANSWER:

import random

def get_user_input(current_max):

 while True:

 try:

 user_input = input(f"Enter 1, 2, or 3 digits starting from {current_max + 1}: ")

 numbers = list(map(int, user_input.split()))

 if all(num == current_max + i + 1 for i, num in enumerate(numbers)) and 1 <=

len(numbers) <= 3:

 return numbers

 else:

 print(f"Invalid input. Please enter 1 to 3 sequential numbers starting from

{current_max + 1}.")

 except ValueError:

 print("Invalid input. Please enter valid integers.")

def get_computer_input(current_max):

 count = random.randint(1, 3) # Computer picks 1 to 3 digits

 return [current_max + i + 1 for i in range(count)]

def play_game():

 current_max = 0

 while current_max < 20:

 # User's turn

 user_numbers = get_user_input(current_max)

 current_max += len(user_numbers)

 print(f"You picked: {user_numbers}. Current max is {current_max}.")

 if current_max >= 20:

 print("Congratulations! You reached 20 and win!")

 break

 # Computer's turn

 computer_numbers = get_computer_input(current_max)

 current_max += len(computer_numbers)

 print(f"Computer picked: {computer_numbers}. Current max is {current_max}.")

 if current_max >= 20:

 print("Computer reached 20. You lose!")

if __name__ == "__main__":

 play_game()

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this

function to print pascal triangle, where number of rows is the input

ANSWER:

def ncr(n, r):

 if r > n or r < 0:

 return 0

 if r == 0 or r == n:

 return 1

 # Calculate nCr using the formula n! / (r! * (n - r)!)

 num = 1

 denom = 1

 for i in range(r):

 num *= (n - i)

 denom *= (i + 1)

 return num // denom

def print_pascals_triangle(rows):

 for i in range(rows):

 # Print leading spaces for formatting

 print(' ' * (rows - i), end='')

 for j in range(i + 1):

 print(ncr(i, j), end=' ')

 print()

Main function to get user input and print Pascal's Triangle

def main():

 rows = int(input("Enter the number of rows for Pascal's Triangle: "))

 print_pascals_triangle(rows)

if __name__ == "__main__":

 main()

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated elements

with frequency count in a list.

Example :

Input:- [2,1,2,3,4,5,1,3,6,2,3,4]

Output:-

Element 2 has come 3 times

Element 1 has come 2 times

Element 3 has come 2 times

Element 4 has come 2 times

Element 1 has come 1 times

Element 6 has come 1 times

ANSWER:

from collections import Counter

def main():

 # Read a list of numbers from user input

 numbers = input("Enter a list of numbers separated by spaces: ").split()

 # Convert the input strings to integers

 numbers = list(map(int, numbers))

 # Count the frequency of each number

 frequency = Counter(numbers)

 # Print the repeated elements with their frequency count

 print("Repeated elements with frequency:")

 for number, count in frequency.items():

 if count > 1:

 print(f"Number: {number}, Frequency: {count}")

if __name__ == "__main__":

 main()

Question 4:-

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and

perform the addition of Matrices A & B and Print the results.

ANSWER:

Program to add two matrices using nested loop

X = [[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]]

Y = [[9, 8, 7],

 [6, 5, 4],

 [3, 2, 1]]

result = [[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]

iterate through rows

for i in range(len(X)):

 # iterate through columns

 for j in range(len(X[0])):

 result[i][j] = X[i][j] + Y[i][j]

for r in result:

 print(r)

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator

ANSWER:

from math import gcd

class Fraction:

 def __init__(self, numerator, denominator):

 if denominator == 0:

 raise ValueError("Denominator cannot be zero.")

 common = gcd(numerator, denominator)

 self.numerator = numerator // common

 self.denominator = denominator // common

 def __add__(self, other):

 if not isinstance(other, Fraction):

 return NotImplemented

 new_numerator = (self.numerator * other.denominator) + (other.numerator *

self.denominator)

 new_denominator = self.denominator * other.denominator

 return Fraction(new_numerator, new_denominator)

 def __str__(self):

 return f"{self.numerator}/{self.denominator}"

Example usage:

fraction1 = Fraction(1, 2)

fraction2 = Fraction(1, 3)

result = fraction1 + fraction2

print(result) # Output: 5/6

