```
In [1]: import random
        def player_turn(current_number):
            while True:
                try:
                    user_input = input("Enter 1, 2, or 3 consecutive numbers starting
                    player_moves = list(map(int, user_input))
                    if len(player moves) < 1 or len(player moves) > 3:
                        print("You must enter 1, 2, or 3 numbers.")
                        continue
                    if player moves[0] != current number or any(player moves[i] != pla
                        print("Numbers must start from {} and be consecutive.".format(
                        continue
                    return player moves
                except ValueError:
                    print("Invalid input. Enter numbers only.")
        def computer_turn(current_number):
            num to play = random.randint(1, 3)
            computer moves = list(range(current number, current number + num to play))
            return computer moves
        def play_game():
            current number = 1
            while current number <= 20:
                print("\nPlayer's Turn")
                player_moves = player_turn(current_number)
                current_number = player_moves[-1] + 1
                print("Player played:", player_moves)
                if current number > 20:
                    print("Player Wins!!!")
                    break
                # Computer's turn
                print("\nComputer's Turn")
                computer_moves = computer_turn(current_number)
                current number = computer moves[-1] + 1
                print("Computer played:", computer_moves)
                if current_number > 20:
                    print("Computer Wins!!!")
                    break
        play_game()
```

```
Player's Turn
Enter 1, 2, or 3 consecutive numbers starting from 1: 1 2
Player played: [1, 2]
Computer's Turn
Computer played: [3]
Player's Turn
Enter 1, 2, or 3 consecutive numbers starting from 4: 6 7
Numbers must start from 4 and be consecutive.
Enter 1, 2, or 3 consecutive numbers starting from 4: 4 5
Player played: [4, 5]
Computer's Turn
Computer played: [6]
Player's Turn
Enter 1, 2, or 3 consecutive numbers starting from 7: 8 9
Numbers must start from 7 and be consecutive.
Enter 1, 2, or 3 consecutive numbers starting from 7: 7 8
Player played: [7, 8]
Computer's Turn
Computer played: [9, 10]
Player's Turn
Enter 1, 2, or 3 consecutive numbers starting from 11: 11 12
Player played: [11, 12]
Computer's Turn
Computer played: [13, 14, 15]
Player's Turn
Enter 1, 2, or 3 consecutive numbers starting from 16: 16 17 18
Player played: [16, 17, 18]
Computer's Turn
Computer played: [19]
Player's Turn
Enter 1, 2, or 3 consecutive numbers starting from 20: 20 21
Player played: [20, 21]
Player Wins!!!
```

1 4 6 4 1

```
In [3]: from collections import Counter

numbers = list(map(int, input("Enter the numbers separated by space: ").split(
    frequency = Counter(numbers)

for element, count in frequency.items():
    print(f"Element {element} has come {count} times")

Enter the numbers separated by space: 1 2 3 1 2 3 4 1 3 2 5 6 5 6 7 7 1 2 5
    Element 1 has come 4 times
    Element 2 has come 4 times
    Element 3 has come 3 times
    Element 4 has come 1 times
    Element 5 has come 3 times
    Element 6 has come 2 times
    Element 7 has come 2 times
    Element 7 has come 2 times
```

```
In [2]: def read_matrix(filename):
            with open(filename, 'r') as file:
                lines = file.readlines()
                matrix A = []
                matrix_B = []
                matrix A.append(list(map(int, lines[0].split())))
                matrix_A.append(list(map(int, lines[1].split())))
                matrix_B.append(list(map(int, lines[3].split())))
                matrix_B.append(list(map(int, lines[4].split())))
            return matrix_A, matrix_B
        def add_matrices(matrix_A, matrix_B):
            result = [[0, 0], [0, 0]]
            for i in range(2):
                for j in range(2):
                    result[i][j] = matrix_A[i][j] + matrix_B[i][j]
            return result
        def print_matrix(matrix):
            for row in matrix:
                print(" ".join(map(str, row)))
        filename = 'Matrix.txt'
        matrix_A, matrix_B = read_matrix(filename)
        result_matrix = add_matrices(matrix_A, matrix_B)
        print("Resultant Matrix after Addition:")
        print_matrix(result_matrix)
```

```
Resultant Matrix after Addition: 6 8 10 12
```

```
In [4]: |import math
        class Fraction:
            def init (self, numerator, denominator):
                self.numerator = numerator
                self.denominator = denominator
            def __add__(self, other):
                new_numerator = self.numerator * other.denominator + other.numerator *
                new denominator = self.denominator * other.denominator
                gcd = math.gcd(new numerator, new denominator)
                new numerator //= gcd
                new_denominator //= gcd
                return Fraction(new_numerator, new_denominator)
            def __str__(self):
                return f"{self.numerator}/{self.denominator}"
        frac1 = Fraction(1, 2)
        frac2 = Fraction(1, 3)
        result = frac1 + frac2
        print("Result of addition:", result)
```

Result of addition: 5/6

```
In [ ]:
```