
Assignment – 15 
 

Design and implement a Python script to detect Deep Fake videos utilizing 

the "Deepfake Detection Challenge" dataset available on Kaggle. 

The “Deepfake Detection Challenge” dataset on Kaggle1 consists of over 500 GB of video 

data, containing approximately 200,000 videos. Each video clip is around 10 seconds long 

and features either the original ‘real’ video or a ‘fake’ video with altered facial or voice 

manipulations2. To create a Python script for detecting deep fake videos, follow these steps: 

1. Data Preparation: 

o Download the dataset from Kaggle3. 

o Extract the videos and organize them into separate folders for real and fake 

videos. 

2. Feature Extraction: 

o Use a pre-trained deep learning model (such as VGGFace or ResNet) to 

extract features from each frame of the videos. 

o Convert the video frames into feature vectors. 

3. Model Training: 

o Split the dataset into training and validation sets. 

o Train a binary classification model (e.g., Convolutional Neural Network or 

Recurrent Neural Network) using the extracted features. 

o Label the videos as real (0) or fake (1). 

o Optimize the model using techniques like dropout, batch normalization, and 

early stopping. 

4. Model Evaluation: 

o Evaluate the trained model on the validation set. 

o Use metrics like accuracy, precision, recall, and F1-score to assess 

performance. 

5. Inference: 

o Apply the trained model to new videos to predict whether they are real or fake. 

Remember to handle video loading, preprocessing, and batching efficiently to avoid memory 

issues. Additionally, consider using transfer learning to improve model performance. 

 

Q1. Define the objective of the "Deepfake Detection Challenge" dataset. 

The objective of the “Deepfake Detection Challenge” dataset is to develop robust machine 

learning models capable of distinguishing between real (authentic) videos and deepfake 

(synthetic) videos. By training on this dataset, researchers and practitioners aim to improve 

the accuracy of deepfake detection algorithms, which is crucial for combating the spread of 

manipulated content online.  

https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.ryaniswong.com/post/kaggle-dfdc/
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge/datasets
https://deepai.org/publication/the-deepfake-detection-challenge-dataset


: Deepfake Detection Challenge on Kaggle: Deepfake Detection Challenge Overview : 

Transfer learning involves using pre-trained neural network models as a starting point for a 

new task, fine-tuning them on a smaller dataset specific to the target problem. : You can 

download the dataset from the Kaggle Deepfake Detection Challenge page. 

Q2: Describe the characteristics of Deep Fake videos and the challenges 

associated with their detection. 

Deepfake videos are manipulated using artificial intelligence (AI) techniques, particularly 
deep learning, resulting in realistic but fabricated content. Here are the key characteristics 
and challenges related to detecting deepfakes: 

1. Characteristics of Deepfake Videos: 
o Realistic Appearance: Deepfakes convincingly mimic facial expressions, lip 

movements, and even voices, making them nearly indistinguishable from 
genuine videos. 

o Face Transformation: An individual’s face is transformed to resemble a target 
subject, creating realistic images or videos of events that never occurred. 

o Variety of Generation Methods: Deepfakes can be generated using various 
techniques, making universal detection challenging. 

2. Challenges in Detecting Deepfakes: 
o Data Challenges:  

▪ Unbalanced Datasets: Deepfake detection methods often face 
imbalanced data, where real videos significantly outnumber 
deepfakes. 

▪ Inadequate Labelled Training Data: High-quality labeled data for 
training deepfake detection models is scarce. 

o Training Challenges:  
▪ Computational Resources: Training deep learning models for 

deepfake detection requires substantial computational power. 
o Reliability Challenges:  

▪ Overconfidence: Detection methods may exhibit overconfidence, 
leading to false positives or negatives. 

▪ Emerging Manipulation Approaches: As deepfake techniques evolve, 
existing detection methods may become less effective. 

o Dominance of Deep Learning: Despite limitations, deep learning-based 
methods dominate deepfake detection, emphasizing the need for efficient 
and generalizable models. 

o Dataset Quality: High-quality datasets are essential for improving detection 
accuracy. 

In summary, detecting deepfakes remains an ongoing challenge, and future research should 
focus on developing robust real-time detection models. 

Q3: Outline the key steps involved in the implementation of a Deep Fake 
video detection algorithm using Python. 

https://link.springer.com/article/10.1007/s10462-024-10810-6
https://link.springer.com/article/10.1007/s10462-024-10810-6


Ans: Certainly! Here are the key steps involved in implementing a deepfake video detection 
algorithm using Python: 

1. Data Preparation: 
o Download the “Deepfake Detection Challenge” dataset from Kaggle. 
o Organize the dataset into separate folders for real and fake videos. 
o Extract frames from the videos and preprocess them (resize, normalize, etc.). 

2. Feature Extraction: 
o Use a pre-trained deep learning model (e.g., VGGFace, ResNet, or 

EfficientNet) to extract features from each frame. 
o Convert the video frames into feature vectors. 

3. Model Architecture: 
o Design a binary classification model (e.g., Convolutional Neural Network, 

Recurrent Neural Network, or a combination). 
o Consider using transfer learning by fine-tuning a pre-trained model on the 

extracted features. 
4. Data Splitting: 

o Split the dataset into training, validation, and test sets. 
o Ensure a balanced distribution of real and fake videos in each split. 

5. Model Training: 
o Train the model using the training set. 
o Optimize hyperparameters (learning rate, batch size, etc.). 
o Monitor training progress using validation metrics (accuracy, loss, etc.). 

6. Model Evaluation: 
o Evaluate the trained model on the validation set. 
o Use metrics like accuracy, precision, recall, F1-score, and ROC-AUC. 
o Adjust the model architecture or hyperparameters if needed. 

7. Inference: 
o Apply the trained model to new videos for prediction. 
o Set a threshold for classification (e.g., if the predicted probability > 0.5, 

classify as fake). 
8. Post-processing: 

o Consider temporal consistency (e.g., consistency across frames) for video-
level predictions. 

o Apply smoothing techniques to reduce false positives. 
9. Deployment: 

o Deploy the trained model as an API or integrate it into an application. 
o Monitor model performance in real-world scenarios. 

10. Continuous Improvement: 
o Collect additional labeled data to improve the model. 
o Explore ensemble methods or other advanced techniques. 

Remember that deepfake detection is an ongoing research area, and staying up-to-date 
with the latest advancements is crucial. 

 



Q4: Discuss the importance of dataset preprocessing in training a Deep Fake 

detection model and suggest potential preprocessing techniques. 

Dataset preprocessing plays a crucial role in training an effective deepfake detection model. 
Here’s why it matters and some potential preprocessing techniques: 

1. Data Cleaning: 
o Remove corrupted or incomplete videos. 
o Handle missing frames or frames with artifacts. 

2. Frame Extraction: 
o Extract frames from videos. 
o Normalize the frame size (e.g., resize to a consistent resolution). 

3. Data Augmentation: 
o Augment the dataset by applying transformations (e.g., rotation, flip, 

brightness adjustment). 
o Helps improve model generalization. 

4. Balancing Classes: 
o Ensure a balanced distribution of real and fake videos. 
o Oversample or undersample the minority class. 

5. Feature Extraction: 
o Extract features from frames (e.g., using pre-trained CNNs). 
o Convert frames into feature vectors. 

6. Normalization: 
o Normalize pixel values (e.g., scale to [0, 1]). 
o Helps stabilize training. 

7. Temporal Consistency: 
o Consider temporal information (e.g., consistency across frames). 
o Use optical flow or motion vectors. 

8. Noise Reduction: 
o Apply denoising techniques to reduce noise in frames. 
o Helps improve feature extraction. 

9. Data Splitting: 
o Split data into training, validation, and test sets. 
o Ensure no data leakage between splits. 

10. Handling Imbalanced Data: 
o Use techniques like SMOTE (Synthetic Minority Over-sampling Technique) to 

balance classes. 

Remember that preprocessing choices depend on the specific dataset and problem. 
Experiment and iterate to find the best preprocessing pipeline for your deepfake detection 
model. 

Q5: Propose and justify the choice of at least two machine learning or deep 
learning algorithms suitable for Deep Fake video detection. 



Detecting deepfake videos involves distinguishing between real and manipulated content. 
Here are two machine learning (ML) and deep learning (DL) algorithms commonly used for 
deepfake detection: 

1. Convolutional Neural Networks (CNNs): 
o Justification:  

▪ CNNs excel at image-based tasks, making them suitable for frame-
level analysis in videos. 

▪ They automatically learn hierarchical features from raw pixel data. 
▪ CNNs can capture spatial patterns and local correlations. 

o Application:  
▪ Train a CNN to classify individual frames as real or fake based on 

visual features. 
▪ Combine frame-level predictions to make video-level decisions. 
▪ Popular architectures include VGG, ResNet, and EfficientNet1. 

2. Support Vector Machines (SVMs): 
o Justification:  

▪ SVMs are effective for binary classification tasks. 
▪ They work well with high-dimensional feature vectors. 
▪ SVMs find an optimal hyperplane to separate classes. 

o Application:  
▪ Extract features (e.g., from CNN embeddings) for each frame. 
▪ Train an SVM on these features to distinguish real from fake frames. 
▪ Aggregate SVM predictions across frames for video-level detection2. 

Remember that combining multiple algorithms or using ensemble methods can enhance 
overall performance. Additionally, consider temporal consistency and multimodal 
approaches for robust deepfake detection. 

Q6: Evaluate the performance metrics that can be used to assess the 

effectiveness of a Deep Fake detection model. 

When evaluating the effectiveness of a deepfake detection model, several performance 
metrics are commonly used. Let’s explore them: 

1. Accuracy (ACC): 
o Measures the overall correctness of predictions. 
o Not ideal for imbalanced datasets. 

2. Precision: 
o Precision (Positive Predictive Value) = TP / (TP + FP) 
o Indicates the proportion of true positive predictions among all positive 

predictions. 
o Useful when minimizing false positives is critical. 

3. Recall (Sensitivity, True Positive Rate): 
o Recall = TP / (TP + FN) 
o Measures the proportion of actual positive samples correctly identified. 
o Important for minimizing false negatives. 

https://paperswithcode.com/task/deepfake-detection
https://paperswithcode.com/task/deepfake-detection
https://paperswithcode.com/task/deepfake-detection
https://arxiv.org/pdf/2302.10280


4. F1-Score: 
o Harmonic mean of precision and recall. 
o F1-Score = 2 * (Precision * Recall) / (Precision + Recall) 
o Balances precision and recall. 

5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC): 
o Measures the model’s ability to distinguish between real and fake samples. 
o AUC-ROC close to 1 indicates good performance. 

6. Area Under the Precision-Recall Curve (AUC-PR): 
o Focuses on the trade-off between precision and recall. 
o Useful for imbalanced datasets. 

7. False Positive Rate (FPR): 
o FPR = FP / (FP + TN) 
o Measures the proportion of true negatives incorrectly classified as positive. 

8. False Negative Rate (FNR): 
o FNR = FN / (FN + TP) 
o Measures the proportion of true positives incorrectly classified as negative. 

9. Specificity (True Negative Rate): 
o Specificity = TN / (TN + FP) 
o Measures the proportion of actual negative samples correctly identified. 

10. Efficiency Metrics: 
o Model inference time, memory usage, and computational efficiency. 

Remember that the choice of metrics depends on the specific use case and the desired 
trade-offs between false positives and false negatives. 

Q7: Consider the ethical implications of Deep Fake technology and discuss the 

role of detection mechanisms in addressing these concerns. 

Deepfake technology raises significant ethical concerns due to its potential for misuse and 
deception. Let’s explore these implications and the role of detection mechanisms: 

1. Ethical Implications of Deepfakes: 
o Misinformation and Deception: Deepfakes can spread false narratives, 

mislead the public, and erode trust in media. 
o Privacy Violations: Creating deepfakes using someone’s likeness without 

consent infringes on privacy rights. 
o Political Manipulation: Deepfakes can be weaponized for political 

propaganda or character assassination. 
o Identity Theft: Criminals can use deepfakes to impersonate individuals, 

leading to financial fraud or reputational damage. 
2. Role of Detection Mechanisms: 

o Early Detection: Detection tools play a crucial role in identifying deepfakes 
before they cause harm. 

o Research and Innovation: Researchers develop forensic techniques to 
identify manipulated media. 

o Platform Policies: Social media platforms implement policies to curb 
deepfake dissemination. 



o Legal Frameworks: Governments and organizations work on regulations to 
address deepfake risks. 

In summary, while deepfakes pose ethical challenges, detection mechanisms are essential 
for safeguarding trust, privacy, and societal well-being.  

Q8: Write a complete code for this assignment. 

Below is a simplified example of how you can approach deepfake detection using Python. 
Keep in mind that this is a basic outline, and in practice, you’ll need to fine-tune the model 
and preprocess the data more thoroughly. 

import os 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, 
roc_auc_score 

 

# Load the dataset (assuming you have already downloaded and organized it) 

# Replace with the actual paths to your dataset 

real_videos_dir = "path/to/real_videos" 

fake_videos_dir = "path/to/fake_videos" 

 

# Create a list of video file paths 

real_videos = [os.path.join(real_videos_dir, filename) for filename in 

os.listdir(real_videos_dir)] 

fake_videos = [os.path.join(fake_videos_dir, filename) for filename in 

os.listdir(fake_videos_dir)] 

 

# Create labels (0 for real, 1 for fake) 

labels = [0] * len(real_videos) + [1] * len(fake_videos) 

 



# Combine real and fake videos 

all_videos = real_videos + fake_videos 

 

# Extract features (e.g., using pre-trained CNNs) 

# Here, we assume you have already extracted features and saved them as a CSV file 

features_df = pd.read_csv("path/to/extracted_features.csv") 

 

# Split data into training and validation sets 

X_train, X_val, y_train, y_val = train_test_split(features_df, labels, test_size=0.2, 

random_state=42) 

 

# Standardize features 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_val_scaled = scaler.transform(X_val) 

 

# Train an SVM model 

svm_model = SVC(kernel="linear", probability=True) 

svm_model.fit(X_train_scaled, y_train) 

 

# Make predictions on the validation set 

y_val_pred = svm_model.predict(X_val_scaled) 

y_val_prob = svm_model.predict_proba(X_val_scaled)[:, 1] 

 

# Evaluate performance metrics 

accuracy = accuracy_score(y_val, y_val_pred) 

precision = precision_score(y_val, y_val_pred) 

recall = recall_score(y_val, y_val_pred) 

f1 = f1_score(y_val, y_val_pred) 

roc_auc = roc_auc_score(y_val, y_val_prob) 



 

print(f"Accuracy: {accuracy:.4f}") 

print(f"Precision: {precision:.4f}") 

print(f"Recall: {recall:.4f}") 

print(f"F1-Score: {f1:.4f}") 

print(f"AUC-ROC: {roc_auc:.4f}") 

 

# Apply the trained model to new videos for inference 

# (Load test videos, extract features, standardize, and predict) 

# Note: In practice, consider using more sophisticated models, hyperparameter tuning, 

# and additional preprocessing steps for better performance. 


