
Assignment – 16 
 

You are tasked with developing a Python code for sentiment extraction utilizing a provided sample 

dataset. The dataset consists of textual data annotated with labels categorizing sentiments into four 

categories: "rude," "normal," "insult," and "sarcasm." 

 Dataset: 

 ● Real News: 

https://drive.google.com/file/d/1FL2HqgLDAP5550nd1h_8iBhAVISTnzr/view?usp=sharing 

 ● Fake News: 

 https://drive.google.com/file/d/1EdI_HyUeI_Fi2nld7rQnnGEpQqn_BwM- /view?usp=sharing 

Sentiment analysis is a fascinating field that allows us to understand the emotions and 
opinions expressed in text. Let’s dive into building a Python sentiment analysis model using 
the provided dataset. 

Here are a few approaches you can take: 

1. LSTM-based Text Classifier (using TensorFlow): 
o Preprocess the data: Load the dataset (tweets in this case), drop neutral 

reviews, and convert categorical sentiment labels to numeric values. 
o Implement an LSTM-based neural network using TensorFlow to classify the 

sentiment (positive or negative). 
2. BERT-based Sentiment Analysis (using Transformers): 

o Load the dataset (tweets) from an Excel file. 
o Use pre-trained BERT models (such as BERTweet) to perform sentiment 

analysis. 
3. Scikit-Learn Approach: 

o Load a dataset (e.g., Amazon product reviews). 
o Preprocess the data (remove null values, take a representative sample). 
o Use Scikit-Learn to build a sentiment analysis model. 

4. Hugging Face Transformers Library: 
o Install the transformers library. 
o Use pre-trained sentiment analysis models from the Hugging Face Hub. 

Q1. Outline the key steps involved in developing a sentiment extraction 
algorithm using Python. 

Developing a sentiment extraction algorithm involves several key steps. Let’s break them 
down: 

1. Data Collection and Preprocessing: 



o Gather labeled data (e.g., tweets, reviews) with sentiment labels (positive, 
negative, neutral). 

o Clean the data by removing noise (special characters, URLs, etc.). 
o Tokenize the text into words or subwords. 

2. Feature Extraction: 
o Convert text data into numerical features (e.g., word embeddings, TF-IDF 

vectors). 
o Consider using pre-trained word embeddings (Word2Vec, GloVe, FastText). 

3. Model Selection: 
o Choose a suitable model architecture (LSTM, BERT, CNN, etc.). 
o LSTM: For sequence-based data (e.g., tweets). 
o BERT: For contextualized embeddings and fine-tuning. 

4. Model Training: 
o Split the data into training, validation, and test sets. 
o Train the chosen model using labeled data. 
o Optimize hyperparameters (learning rate, batch size, etc.). 

5. Model Evaluation: 
o Evaluate the model on the validation set using metrics like accuracy, F1-

score, or ROC-AUC. 
o Fine-tune if necessary. 

6. Inference: 
o Apply the trained model to new, unseen data to predict sentiment labels. 
o Extract sentiment scores or probabilities. 

7. Post-processing: 
o Convert predictions to human-readable sentiment labels (positive, negative, 

etc.). 
o Visualize results or integrate the model into an application. 

Remember that the choice of model and preprocessing steps depends on your specific 
dataset and requirements.  

Q2: Describe the structure and format of the sample dataset required for 
sentiment extraction. 

The structure and format of a sample dataset for sentiment extraction typically include the 
following components: 

1. Textual Data (Features): 
o Each row represents a piece of text (e.g., tweets, reviews, comments). 
o This text is the primary input for sentiment analysis. 
o Usually stored in a column named “text” or similar. 

2. Sentiment Labels (Targets): 
o Each row has an associated sentiment label. 
o Common labels include “positive,” “negative,” “neutral,” or more specific 

categories like “happy,” “angry,” etc. 
o Stored in a separate column (e.g., “sentiment” or “label”). 

3. Data Annotation: 



o Annotations can be manual (human-labeled) or obtained from existing 
datasets. 

o Annotations link each text to its corresponding sentiment label. 
4. Dataset Size: 

o The dataset should be sufficiently large for training a robust model. 
o Ideally, it contains thousands of labeled examples. 

5. Balance: 
o Ensure a balanced distribution of sentiment labels. 
o Avoid having too many examples of one sentiment class. 

6. Additional Features (Optional): 
o You can include other features (e.g., user metadata, timestamps) if available. 

Here’s a simplified example of a CSV dataset: 

text sentiment 

“I love this product! Highly recommended.” positive 

“Terrible experience. Avoid at all costs.” negative 

“Just okay. Nothing special.” neutral 

Remember that real-world datasets may be more complex, but this structure provides a 
foundation for sentiment analysis tasks. 

Q3: Implement the Python code to read and preprocess the sample dataset 
for sentiment analysis. Ensure that the code correctly handles text data and 
labels. 

Python script to read and preprocess the sample dataset for sentiment analysis. I’ll provide 
a high-level overview of the steps, and you can adapt them to your specific dataset. 

1. Load the Dataset: 
o Assuming your dataset is in CSV format, replace "sample_dataset.csv" with 

the actual path to your dataset. 
o Drop rows with missing values (if any). 

2. Text Preprocessing: 
o Convert text to lowercase. 
o Remove special characters, URLs, and numbers. 
o Tokenize the text using NLTK. 
o Remove stopwords. 

3. Label Encoding: 



o Encode sentiment labels (e.g., “positive,” “negative”) into numeric values. 
4. Split the Dataset: 

o Divide the data into train, validation, and test sets. 

Here’s a simplified version of the code: 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

import re 

import nltk 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

 

# Load the sample dataset (replace with your actual file path) 

file_path = "sample_dataset.csv" 

df = pd.read_csv(file_path) 

 

# Drop rows with missing values 

df.dropna(subset=["text", "sentiment"], inplace=True) 

 

# Preprocess the text data 

def preprocess_text(text): 

    text = text.lower() 

    text = re.sub(r"[^a-zA-Z\s]", "", text) 

    tokens = word_tokenize(text) 

    stop_words = set(stopwords.words("english")) 

    filtered_tokens = [word for word in tokens if word not in stop_words] 

    return " ".join(filtered_tokens) 

 

df["processed_text"] = df["text"].apply(preprocess_text) 

 

# Encode sentiment labels 

label_encoder = LabelEncoder() 

df["label_encoded"] = label_encoder.fit_transform(df["sentiment"]) 

 

# Split the dataset 

train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) 

train_df, val_df = train_test_split(train_df, test_size=0.2, 

random_state=42) 

 

# Print a summary 

print(f"Dataset size: {len(df)}") 

print(f"Train size: {len(train_df)}, Validation size: {len(val_df)}, Test 

size: {len(test_df)}") 

print(f"Unique sentiment labels: {df['sentiment'].nunique()}") 

 

# Save the preprocessed datasets (if needed) 

train_df.to_csv("train_dataset.csv", index=False) 

val_df.to_csv("val_dataset.csv", index=False) 

test_df.to_csv("test_dataset.csv", index=False) 

 

print("Dataset preprocessed and split successfully!") 

Remember to replace "sample_dataset.csv" with your actual dataset path.  



Q4: Discuss the process of classifying sentiments into the specified 
categories: "rude," "normal," "insult," and "sarcasm." Explain any techniques 
or algorithms employed for this classification task. 

Sentiment classification into specific categories like “rude,” “normal,” “insult,” and 
“sarcasm” involves several techniques and algorithms. Let’s explore them: 

1. Rule-Based Approaches: 
o These methods rely on predefined rules or patterns to classify sentiments. 
o For example, detecting sarcasm might involve identifying negation phrases or 

contrasting statements. 
o Rule-based approaches are simple but may not handle nuances well. 

2. Machine Learning Models: 
o Supervised learning models are commonly used for sentiment classification. 
o Naive Bayes: A probabilistic model that works well for text classification 

tasks. It assumes independence between features. 
o Support Vector Machines (SVM): Effective for binary classification tasks. 
o Random Forests: Ensemble of decision trees. 
o Logistic Regression: Linear model for binary classification. 
o Neural Networks (e.g., LSTM, BERT):  

▪ LSTM (Long Short-Term Memory): Recurrent neural network (RNN) 
architecture for sequence data (e.g., tweets). 

▪ BERT (Bidirectional Encoder Representations from Transformers): 
Pre-trained transformer model fine-tuned for various NLP tasks, 
including sentiment analysis. 

3. Word Embeddings: 
o Represent words as dense vectors in a continuous space. 
o Word2Vec, GloVe, and FastText are popular word embedding techniques. 
o These embeddings capture semantic relationships between words. 

4. Feature Engineering: 
o Extract features from text data:  

▪ Bag-of-Words (BoW): Represents text as a vector of word frequencies. 
▪ TF-IDF (Term Frequency-Inverse Document Frequency): Considers 

word importance. 
▪ N-grams: Captures word sequences. 
▪ Word embeddings: Dense representations. 

o Combine features for model input. 
5. Handling Imbalanced Data: 

o Ensure a balanced distribution of sentiment labels. 
o Techniques like oversampling, undersampling, or using class weights can 

help. 
6. Evaluation Metrics: 

o Accuracy, precision, recall, F1-score, and ROC-AUC. 
o Choose metrics based on the problem context. 

7. Fine-Tuning and Hyperparameter Optimization: 
o Experiment with different architectures, learning rates, batch sizes, and 

dropout rates. 



o Use validation data to fine-tune the model. 

Remember that the choice of technique depends on the dataset, available resources, and 
desired performance. Combining multiple approaches often yields better results. 

Q5. Evaluate the effectiveness of the sentiment extraction algorithm on the 
provided sample dataset. Consider metrics such as accuracy, precision, recall, 
and F1-score 

To evaluate the sentiment extraction algorithm, we’ll calculate common classification 
metrics using the provided sample dataset. Let’s assume we have predictions from our 
model and true sentiment labels for each example. 

1. Accuracy: 
o Measures overall correctness:  

\frac{\text{Correct Predictions}}{\text{Total Examples}} 

2. Precision: 
o Measures how many predicted positive examples are actually positive:  

\frac{\text{True Positives}}{\text{True Positives + False Positives}} 

3. Recall (Sensitivity): 
o Measures how many actual positive examples were correctly predicted:  

\frac{\text{True Positives}}{\text{True Positives + False Negatives}} 

4. F1-score: 
o Harmonic mean of precision and recall:  

\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + 
\text{Recall}} 

5. Confusion Matrix: 
o Helps visualize true positives, true negatives, false positives, and false 

negatives. 

Here’s how you can compute these metrics: 

from sklearn.metrics import accuracy_score, precision_score, recall_score, 

f1_score, confusion_matrix 

 

# Assuming you have true labels (y_true) and predicted labels (y_pred) 

y_true = [1, 0, 1, 0, ...]  # Actual sentiment labels (e.g., 1 for 

positive, 0 for negative) 

y_pred = [1, 1, 0, 0, ...]  # Predicted sentiment labels 

 

# Calculate metrics 

accuracy = accuracy_score(y_true, y_pred) 



precision = precision_score(y_true, y_pred) 

recall = recall_score(y_true, y_pred) 

f1 = f1_score(y_true, y_pred) 

conf_matrix = confusion_matrix(y_true, y_pred) 

 

print(f"Accuracy: {accuracy:.4f}") 

print(f"Precision: {precision:.4f}") 

print(f"Recall: {recall:.4f}") 

print(f"F1-score: {f1:.4f}") 

print("Confusion Matrix:") 

print(conf_matrix) 

Remember to replace y_true and y_pred with your actual labels and predictions. These 

metrics will help you assess the model’s performance on sentiment extraction! 

Q6. Propose potential enhancements or modifications to improve the 
performance of the sentiment extraction algorithm. Justify your 
recommendations. 

Improving the performance of a sentiment extraction algorithm involves several strategies. 
Let’s explore some enhancements and their justifications: 

1. Leverage Pre-trained Language Models: 
o Justification: Pre-trained models like BERT, RoBERTa, and GPT-3 have learned 

rich contextual representations from large amounts of text data. Fine-tuning 
these models on your sentiment dataset can significantly boost performance. 

o Action: Fine-tune a pre-trained transformer model (e.g., BERT) specifically for 
sentiment analysis. 

2. Data Augmentation: 
o Justification: Increase the diversity of your training data by creating new 

examples through techniques like back-translation, synonym replacement, or 
paraphrasing. 

o Action: Augment your dataset with variations of existing sentences. 
3. Attention to Class Imbalance: 

o Justification: If sentiment classes are imbalanced (e.g., more positive samples 
than negative), the model may favor the majority class. Address this 
imbalance to ensure fair representation. 

o Action: Use class weights during training or oversample/undersample the 
minority class. 

4. Ensemble Models: 
o Justification: Combining predictions from multiple models often improves 

overall performance. 
o Action: Train different models (e.g., LSTM, BERT, SVM) and ensemble their 

predictions. 
5. Fine-tune Hyperparameters: 

o Justification: Proper hyperparameter tuning can significantly impact model 
performance. 

o Action: Experiment with learning rates, batch sizes, dropout rates, and 
optimizer choices. 



6. Contextual Embeddings: 
o Justification: Consider using contextual embeddings (e.g., ELMo, Flair) that 

capture word meanings in context. 
o Action: Explore models beyond static word embeddings. 

7. Domain-Specific Lexicons: 
o Justification: Create lexicons specific to your domain (e.g., social media, 

product reviews) to enhance sentiment analysis. 
o Action: Curate lists of domain-specific positive/negative words. 

8. Error Analysis: 
o Justification: Understand where the model fails and why. 
o Action: Analyze misclassified examples and adjust the model accordingly. 

Remember that the effectiveness of these enhancements depends on your specific dataset 
and problem. Experiment, iterate, and monitor performance to find the best combination 

Q7: Reflect on the ethical considerations associated with sentiment analysis, 
particularly regarding privacy, bias, and potential misuse of extracted 
sentiments. 

Sentiment analysis, while powerful, comes with ethical implications that we must consider: 

1. Privacy Concerns: 
o Issue: Sentiment analysis often involves analyzing personal text data (e.g., 

social media posts, reviews). 
o Considerations:  

▪ Informed Consent: Ensure users are aware that their data is being 
analyzed. 

▪ Anonymization: Remove personally identifiable information (PII) from 
the data. 

▪ Data Security: Protect data during storage and transmission. 
2. Bias and Fairness: 

o Issue: Models can inherit biases present in training data. 
o Considerations:  

▪ Bias Detection: Regularly assess model bias using fairness metrics. 
▪ Debiasing Techniques: Mitigate bias through reweighting, adversarial 

training, or fairness-aware loss functions. 
▪ Diverse Training Data: Include diverse samples to reduce bias. 

3. Misuse and Manipulation: 
o Issue: Sentiment analysis can be misused for harmful purposes. 
o Considerations:  

▪ Context Awareness: Understand the context of sentiment (e.g., 
sarcasm, irony). 

▪ Responsible Deployment: Avoid enabling harmful applications (e.g., 
cyberbullying, misinformation). 

4. Transparency and Explainability: 
o Issue: Black-box models lack transparency. 
o Considerations:  



▪ Interpretability: Use interpretable models or techniques (e.g., LIME, 
SHAP). 

▪ Explain Predictions: Provide users with reasons behind sentiment 
predictions. 

5. Social Impact: 
o Issue: Sentiment analysis affects public perception. 
o Considerations:  

▪ Media Influence: Be cautious when applying sentiment analysis to 
news or social media. 

▪ Avoid Polarization: Strive for balanced views. 
6. Legal and Regulatory Compliance: 

o Issue: Compliance with data protection laws (e.g., GDPR). 
o Considerations:  

▪ Data Handling: Follow legal guidelines for data collection, storage, 
and processing. 

▪ User Rights: Respect user rights regarding data access and deletion. 

Remember that responsible development and deployment of sentiment analysis models are 
essential to minimize harm and maximize benefits. 

Q8: Write a complete code for this assignment 

Below is a Python code snippet for sentiment extraction using a sample dataset. I assume 
you have a CSV file with columns “text” (containing the textual data) and “sentiment” 
(containing the labels). 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

 

# Load the sample dataset (replace with your actual file path) 

file_path = "sample_dataset.csv" 

df = pd.read_csv(file_path) 

 

# Preprocess the text data 

def preprocess_text(text): 

    text = text.lower() 

    text = ''.join(e for e in text if e.isalnum() or e.isspace()) 

    return text 

 

df["processed_text"] = df["text"].apply(preprocess_text) 

 

# Split the dataset 

X = df["processed_text"] 

y = df["sentiment"] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Vectorize text using TF-IDF 

vectorizer = TfidfVectorizer(max_features=1000) 

X_train_tfidf = vectorizer.fit_transform(X_train) 



X_test_tfidf = vectorizer.transform(X_test) 

 

# Train a logistic regression model 

model = LogisticRegression(max_iter=1000) 

model.fit(X_train_tfidf, y_train) 

 

# Make predictions 

y_pred = model.predict(X_test_tfidf) 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, y_pred) 

classification_report_str = classification_report(y_test, y_pred) 

conf_matrix = confusion_matrix(y_test, y_pred) 

 

print(f"Accuracy: {accuracy:.4f}") 

print("Classification Report:\n", classification_report_str) 

print("Confusion Matrix:\n", conf_matrix) 

Remember to replace "sample_dataset.csv" with the actual path to your dataset. This code 
preprocesses the text, vectorizes it using TF-IDF, trains a logistic regression model, and 
evaluates its performance. Adjust the hyperparameters and explore other models as needed 

 


