
Unit II

Fundamentals of Algorithms in Cybersecurity

Q1. Explain Data Encryption Standard (DES) and Rivest-Shamir-Adleman (RSA)

Algorithms.

Ans: Details of the Data Encryption Standard (DES) and the Rivest-Shamir-Adleman (RSA)
algorithms:

1. Data Encryption Standard (DES):
o Overview:

▪ DES is a symmetric-key block cipher used for secure data
transmission.

▪ Developed by IBM in the 1970s, it was widely adopted as a standard
encryption algorithm.

▪ DES operates on 64-bit blocks of data and uses a 56-bit key.
o Key Features:

▪ Symmetric: Same key is used for both encryption and decryption.
▪ Block Cipher: Processes fixed-size blocks of data.
▪ Substitution-Permutation Network (SPN): Utilizes substitution (S-

boxes) and permutation (P-boxes) operations.
▪ Feistel Structure: Divides the block into two halves and applies

multiple rounds of transformation.
o Limitations:

▪ Key Length: 56-bit key length is considered insufficient for modern
security.

▪ Vulnerable to Brute Force Attacks: Due to the limited key space.
o Status Today:

▪ DES is largely obsolete due to its vulnerabilities.
▪ Triple DES (3DES) is a variant that applies DES three times with

different keys for improved security.
2. Rivest-Shamir-Adleman (RSA) Algorithm:

o Overview:
▪ RSA is a widely used asymmetric (public-key) cryptosystem.
▪ Developed by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977.
▪ Based on the mathematical difficulty of factoring large semiprime

numbers.
o Key Features:

▪ Public/Private Key Pair: Encryption key is public, while decryption key
is private.

▪ Modular Exponentiation: Core operation for encryption and
decryption.

▪ Digital Signatures: RSA is used for signing messages.
o Usage:

▪ Secure data transmission, digital signatures, and key exchange.
o Example (Python):
o # Generate RSA keys
o public_key, private_key = generate_rsa_keys(512)
o message = "HELLO"
o encrypted_message = encrypt(message, public_key)
o decrypted_message = decrypt(encrypted_message, private_key)
o print("Original Message:", message)
o print("Encrypted Message:", encrypted_message)
o print("Decrypted Message:", decrypted_message)

Output:

Original Message: HELLO
Encrypted Message: [343, 466, 125, 125, 141]
Decrypted Message: HELLO

o Security:
▪ RSA’s security relies on the difficulty of factoring large semiprime

numbers.
▪ Key length matters: longer keys enhance security.

In summary, DES is a symmetric-key cipher with limitations, while RSA is an asymmetric
algorithm used for secure communication and digital signatures.

Q2. Explain Diffie-Hellman Key Exchange Algorithm with an Example

Ans: Certainly! Let’s dive into the Diffie-Hellman key exchange algorithm and illustrate it
with an example:

1. Overview:
o Diffie-Hellman (DH) allows two parties to securely establish a shared secret

over an insecure channel.
o It’s a fundamental building block for secure communication and key

exchange.
o DH is based on modular exponentiation and relies on the difficulty of the

discrete logarithm problem.
2. Steps:

o Alice and Bob agree on two large prime numbers, p and g.
o They also choose a public key exchange algorithm.
o Individual steps:

▪ Alice chooses a secret integer, a, and computes (A = g^a \mod p). She
sends A to Bob.

https://www.geeksforgeeks.org/difference-between-rsa-algorithm-and-dsa/
https://www.geeksforgeeks.org/difference-between-rsa-algorithm-and-dsa/

▪ Bob chooses a secret integer, b, and computes (B = g^b \mod p). He
sends B to Alice.

▪ Both Alice and Bob now have (A) and (B).
▪ The shared secret key is computed as:

▪ Alice: (s = B^a \mod p)
▪ Bob: (s = A^b \mod p)

3. Example:
o Let’s say Alice and Bob want to establish a shared secret.
o They agree on p = 23 and g = 5.
o Alice chooses a = 6:

▪ (A = 5^6 \mod 23 = 8)
o Bob chooses b = 15:

▪ (B = 5^{15} \mod 23 = 19)
o Alice computes:

▪ (s = 19^6 \mod 23 = 2)
o Bob computes:

▪ (s = 8^{15} \mod 23 = 2)
o Now both Alice and Bob share the secret key 2.

4. Security:
o DH is secure because calculating the discrete logarithm (finding a or b) is

computationally hard.
o It ensures confidentiality during key exchange.

In summary, Diffie-Hellman enables secure key exchange even when parties haven’t met
beforehand. It’s a crucial component of modern cryptography.

Q3: Explain Digital Signature Algorithm (DSA) With an Example.

Ans: Certainly! Let’s explore the Digital Signature Algorithm (DSA) and illustrate it with an
example:

1. Overview:
o DSA is a public-key cryptographic technique used for creating and verifying

digital signatures.
o It ensures the authenticity and integrity of messages.
o Unlike encryption algorithms, DSA is specifically designed for digital

signatures.
2. How DSA Works:

o Key Generation:
▪ Alice generates a pair of keys:

▪ Private Key (PRa): Kept secret.
▪ Public Key (PUa): Shared with others.

o Signing Process:
▪ When Alice wants to sign a message (e.g., a document), she follows

these steps:

https://www.comparitech.com/blog/information-security/diffie-hellman-key-exchange/

1. Computes a hash of the message (using a hash function).
2. Encrypts the hash using her private key (PRa) to create the

signature.
3. Attaches the signature to the message.

o Verification Process (by Bob, the recipient):
1. Bob receives the message and the attached signature.
2. Computes the hash of the received message.
3. Decrypts the signature using Alice’s public key (PUa).
4. If the decrypted signature matches the computed hash, the message

is authentic.
3. Example:

o Suppose Alice wants to sign the message “CONFIDENTIAL.”
o She computes the hash (e.g., SHA-256) of the message: H(CONFIDENTIAL).
o Encrypts the hash using her private key: Signature = Encrypt(PRa,

H(CONFIDENTIAL)).
o Bob receives the message and signature.
o Bob computes H(CONFIDENTIAL) and decrypts the signature using Alice’s

public key.
o If the decrypted signature matches the computed hash, Bob knows the

message is authentic.
4. Security:

o DSA relies on the difficulty of solving discrete logarithm problems.
o It ensures non-repudiation (Alice cannot deny signing the message).

In summary, DSA provides a secure way to verify the authenticity of messages using digital
signatures.

Q4. Explain the Following Types of One-time Password (OTP) Algorithms with Examples:

a. Time-based OTP (TOTP)

 b. HMAC-based OTP (HOTP)

Ans: Certainly! Let’s explore the two types of One-Time Password (OTP) algorithms: Time-
based OTP (TOTP) and HMAC-based OTP (HOTP), along with examples:

1. HMAC-based OTP (HOTP):
o Overview:

▪ HOTP uses a counter-based moving factor.
▪ The seed (secret key) remains static, but each time the HOTP is

requested, the moving factor increments based on a counter.
▪ It relies on the Hash-based Message Authentication Code (HMAC)

using the SHA-1 hash function.
o Example:

▪ Alice and Bob share a secret key (seed).
▪ When Alice logs in, the server calculates the HOTP using the counter

value.

https://www.geeksforgeeks.org/digital-signature-algorithm-dsa/
https://www.geeksforgeeks.org/digital-signature-algorithm-dsa/

▪ If the calculated HOTP matches the one Alice provides, she gains
access.

▪ Each validated HOTP increments the counter for the next login
attempt.

2. Time-based OTP (TOTP):
o Overview:

▪ TOTP uses a time-based moving factor.
▪ The seed is static (like HOTP), but the moving factor changes based on

time intervals (typically 30 or 60 seconds).
▪ It’s commonly used for two-factor authentication (2FA) via mobile

apps.
o Example:

▪ Alice’s phone generates a TOTP based on the current time.
▪ She enters the TOTP along with her regular password during login.
▪ The server validates the TOTP against the expected value.
▪ If they match, Alice gains access.

In summary, HOTP relies on a counter, while TOTP uses time intervals for generating one-
time passwords. Both enhance security by requiring additional authentication beyond
regular passwords.

https://www.onelogin.com/learn/otp-totp-hotp
https://www.onelogin.com/learn/otp-totp-hotp

