
assignment-1-1

November 3, 2024

Question 1: Number game between user and computer. The user starts by entering either 1 or 2
or 3 digits starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits
in sequence, starting from the max number played by the user. User enters the next 1 or 2 or 3
next digits in sequence, starting from the max number played by the computer. Whoever reaches
20 first wins the game. Note: - the numbers should be in sequence starting from 1. - minimum
number user or computer should pick is at least 1 digit in sequence - maximum number user or
computer can pick only 3 digits in sequence

[1]: #Number game between user and computer
def computer_move(last_num):

target = 20
move_count = (target - last_num - 1) % 4
if move_count == 0:

move_count = 1
return list(range(last_num + 1, last_num + move_count + 1))

def number_game():
print("Number Game: Reach 20 to Win!")
last_num = 0

while last_num < 20:
player_input = input("enter the next 1, 2, or 3 numbers in sequence: ")
player_numbers = list(map(int, player_input.split()))

Check player's numbers are valid
if any(num <= last_num or num > last_num + 3 for num in player_numbers)␣

↪or len(player_numbers) > 3:
print("Invalid move! Please enter 1 to 3 numbers in sequence␣

↪starting from the last number.")
continue

last_num = player_numbers[-1]

Check if the player wins
if last_num >= 20:

print("Player Wins!!!")
break

Computer's move

1

computer_numbers = computer_move(last_num)
print(f"Computer played: {computer_numbers}")
last_num = computer_numbers[-1]

Check if the computer wins
if last_num >= 20:

print("Computer Wins!!!")
break

number_game()

Number Game: Reach 20 to Win!

enter the next 1, 2, or 3 numbers in sequence: 1

Computer played: [2, 3]

enter the next 1, 2, or 3 numbers in sequence: 4

Computer played: [5, 6, 7]

enter the next 1, 2, or 3 numbers in sequence: 8

Computer played: [9, 10, 11]

enter the next 1, 2, or 3 numbers in sequence: 12

Computer played: [13, 14, 15]

enter the next 1, 2, or 3 numbers in sequence: 16

Computer played: [17, 18, 19]

enter the next 1, 2, or 3 numbers in sequence: 20

Player Wins!!!

2.Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . Use this
function to print pascal triangle, where number of rows is the input.

[2]: import math

def ncr(n, r):
"""Function to calculate n choose r (C(n, r)) using the formula."""
return math.factorial(n) // (math.factorial(r) * math.factorial(n - r))

def print_pascal_triangle(rows):
"""Function to print Pascal's Triangle with the given number of rows."""
for n in range(rows):

Print spaces for formatting the triangle shape
print(" " * (rows - n), end=" ")

Print each combination in row n
for r in range(n + 1):

print(ncr(n, r), end=" ")

2

print()

Print Pascal's Triangle with 5 rows
rows = int(input("Enter the number of rows for Pascal's Triangle: "))
print_pascal_triangle(rows)

Enter the number of rows for Pascal's Triangle: 6

1
1 1

1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Question 3: Read a list of n numbers during runtime. Write a Python program to print the repeated
elements with frequency count in a list.

[3]: numbers = list(map(int, input("Enter numbers separated by spaces: ").split()))
frequency_count = {}
for num in numbers:

if num in frequency_count:
frequency_count[num] += 1

else:
frequency_count[num] = 1

print("Output:")
for number, count in frequency_count.items():

print(f"Element {number} has come {count} times")

Enter numbers separated by spaces: 1 2 3 4 5 6 7 2 4 2 5 8 9 8 3

Output:
Element 1 has come 1 times
Element 2 has come 3 times
Element 3 has come 2 times
Element 4 has come 2 times
Element 5 has come 2 times
Element 6 has come 1 times
Element 7 has come 1 times
Element 8 has come 2 times
Element 9 has come 1 times

Question 4:- Develop a python code to read matric A of order 2x2 and Matrix B of order 2x2 from
a file and perform the addition of Matrices A & B and Print the results.

[4]: def read_matrices(filename):
with open(filename, 'r') as file:

lines = file.readlines()

3

Extract lines for Matrix A and Matrix B
matrix_a_lines = lines[:2]
matrix_b_lines = lines[3:5]

Parse Matrix A
matrix_a = []
for line in matrix_a_lines:

matrix_a.append([int(num) for num in line.split()])

Parse Matrix B
matrix_b = []
for line in matrix_b_lines:

matrix_b.append([int(num) for num in line.split()])

return matrix_a, matrix_b

def add_matrices(matrix_a, matrix_b):
Initialize the result matrix as a 2x2 matrix filled with 0s
result_matrix = [[0, 0], [0, 0]]

for i in range(2):
for j in range(2):

result_matrix[i][j] = matrix_a[i][j] + matrix_b[i][j]

return result_matrix

Specify the file path
filename = r"D:\matrices.txt" # Update this path as needed

Read matrices from file
matrix_a, matrix_b = read_matrices(filename)

Perform addition
result_matrix = add_matrices(matrix_a, matrix_b)

Print result
print("Matrix A:")
for row in matrix_a:

print(row)

print("Matrix B:")
for row in matrix_b:

print(row)

print("Result of A + B:")
for row in result_matrix:

print(row)

4

Matrix A:
[1, 2]
[3, 4]
Matrix B:
[5, 6]
[7, 8]
Result of A + B:
[6, 8]
[10, 12]

Question 5:- Write a program that overloads the + operator so that it can add two objects of the
class Fraction. Fraction can be considered of the for P/Q where P is the numerator and Q is the
denominator

[6]: class Fraction:
def __init__(self, numerator, denominator):

if denominator == 0:
raise ValueError("Denominator cannot be zero.")

self.numerator = numerator
self.denominator = denominator
self.simplify()

def __add__(self, other):
Check if the other object is a Fraction
if isinstance(other, Fraction):

Calculate the new numerator and denominator
new_numerator = (self.numerator * other.denominator) + (other.

↪numerator * self.denominator)
new_denominator = self.denominator * other.denominator
return Fraction(new_numerator, new_denominator)

def simplify(self):
def find_common_factor(numerator, denominator):

Find common factors by trial division
min_value = min(abs(numerator), abs(denominator))
for i in range(min_value, 1, -1):

if numerator % i == 0 and denominator % i == 0:
return i

return 1

common_factor = find_common_factor(self.numerator, self.denominator)
self.numerator //= common_factor
self.denominator //= common_factor

def __str__(self):
return f"{self.numerator}/{self.denominator}"

5

try:
Taking input from the user for the first fraction
num1 = int(input("Enter numerator for the first fraction: "))
den1 = int(input("Enter denominator for the first fraction: "))
fraction1 = Fraction(num1, den1)

Taking input from the user for the second fraction
num2 = int(input("Enter numerator for the second fraction: "))
den2 = int(input("Enter denominator for the second fraction: "))
fraction2 = Fraction(num2, den2)

Adding the two fractions
result = fraction1 + fraction2

Output
print(f"{fraction1} + {fraction2} = {result}")

except ValueError as ve:
print(f"Error: {ve}")

except ZeroDivisionError:
print("Denominator cannot be zero.")

Enter numerator for the first fraction: 1
Enter denominator for the first fraction: 3
Enter numerator for the second fraction: 4
Enter denominator for the second fraction: 6

1/3 + 2/3 = 1/1

[]:

6

