assignment-1
November 3, 2024

1 Question 1: Number Game Between User and Computer
[5]: | import random

def computer_move(current_max) :
return list(range(current_max + 1, current_max + random.randint(1l, 3) + 1))

def play_number_game():
current_max = 0
while current_max < 20:
try:
user_moves = list(map(int, input(f"Player: Enter 1, 2, or 3,
wconsecutive numbers starting from {current_max + 1}: ").split()))
if user_moves[0] '= current_max + 1 or len(user_moves) not in [1,,
=2, 3] or any(user_moves[i] != user_moves[0] + i for i in
orange(len(user_moves))):
raise ValueError
current_max = user_moves[-1]
if current_max >= 20:
print("Player Wins!!!")
return
except ValueError:
print("Invalid move! Enter consecutive numbers in sequence.")
continue

computer_moves = computer_move(current_max)
print (f"Computer played: {computer_movesl}")
current_max = computer_moves[-1]
if current_max >= 20:

print ("Computer Wins!!!")

return

play_number_game ()
Player: Enter 1, 2, or 3 consecutive numbers starting from 1: 1 2 3

Computer played: [4, 5, 6]
Player: Enter 1, 2, or 3 consecutive numbers starting from 7: 7 8



Computer played: [9, 10]

Player: Enter 1, 2, or 3 consecutive numbers starting from 11: 11 12
Computer played: [13, 14]

Player: Enter 1, 2, or 3 consecutive numbers starting from 15: 15
Computer played: [16]

Player: Enter 1, 2, or 3 consecutive numbers starting from 17: 17
Computer played: [18]

Player: Enter 1, 2, or 3 consecutive numbers starting from 19: 19 20
Player Wins!!!

2 Question 2: Pascal’s Triangle Using nCr Function

[8]: def ncr(n, r):
result = 1
for i in range(r):
result = result * (n - i) // (i + 1)
return result
def print_pascal_triangle(rows):
for i in range(rows):

row = 1
print(" " * (rows - i), end="")
for j in range(i + 1):

print(row, end=" ")

row = row * (i - j) // (G + 1)
print ()

rows = int(input("Enter number of rows for Pascal's triangle: "))
print_pascal_triangle(rows)

Enter number of rows for Pascal's triangle: 8
1
11
121
1331
14641
1510105 1
161520 156 1
1721332171

3 Question 3: Print Repeated Elements with Frequency Count
[10]: from collections import Counter

def print_frequency_count (nums) :
counter = Counter (nums)
for element, frequency in counter.items():
print(f"Element {element} has come {frequency} times")



nums =

list(map(int, input("Enter numbers separated by spaces: ").split()))

print_frequency_count (nums)

Enter numbers

TTTT
Element
Element
Element
Element
Element
Element
Element
Element

7

00 N O O W N =

8 8
has
has
has
has
has
has
has
has

separated by spaces: 1 2233344445555566666¢677
888888

come 1 times
come 2 times
come 3 times
come 4 times
come 5 times
come 6 times
come 7 times
come 8 times

4 Question 4: Addition of 2x2 Matrices from File

[18]: def read_matrix(filename):
with open(filename, 'r') as file:
lines = file.readlines()
matrix_lines = [line.strip() for line in lines if line.strip() and not
~line.startswith("Matrix")]

matrix_a = [list(map(int, matrix_lines[0].split())), list(map(int,,
cmatrix_lines[1].split()))]

matrix_b = [list(map(int, matrix_lines[2].split())), list(map(int,,
cmatrix_lines[3].split()))]

print("Matrix A:", matrix_a)

print("Matrix B:", matrix_b)

return matrix_a, matrix_b

def add_matrices(matrix_a, matrix_b):
result =
orange(2)]

[[matrix_ali] [j] + matrix_b[i][j] for j in range(2)] for i in

return result
matrix_a, matrix_b = read matrix('matrices.txt')

result_matrix

= add_matrices(matrix_a, matrix_b)

print ("Result of A + B:")
for row in result_matrix:
print (row)

Matrix A:
Matrix B:
Result of A + B:

[6, 8]

1,
s,

2], [3, 4]1]
6], [7, 8]]



(10, 12]

5 Question 5: Overloading + Operator for Fraction Class
[20]: from math import gcd

class Fraction:
def __init_ _(self, numerator, denominator):
self .numerator = numerator
self .denominator = denominator
self.simplify()

def simplify(self):
common_divisor = gcd(self.numerator, self.denominator)
self .numerator //= common_divisor
self .denominator //= common_divisor

def __add__(self, other):
if isinstance(other, Fraction):
new_numerator = (self.numerator * other.denominator) + (other.
wnumerator * self.denominator)
new_denominator = self.denominator * other.denominator
return Fraction(new_numerator, new_denominator)
return NotImplemented

def __str__(self):
return f'"{self.numerator}/{self.denominator}"
fracil Fraction(4, 2)
frac2 = Fraction(5, 3)
result = fracl + frac?2
print ("Result of addition:", result)

Result of addition: 11/3

[]1:



	Question 1: Number Game Between User and Computer
	Question 2: Pascal's Triangle Using nCr Function
	Question 3: Print Repeated Elements with Frequency Count
	Question 4: Addition of 2x2 Matrices from File
	Question 5: Overloading + Operator for Fraction Class

