
Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits starting

from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence, starting from the

max number played by the user. User enters the next 1 or 2 or 3 next digits in sequence, starting from

the max number played by the computer. Whoever reaches 20 first wins the game.

CODE:

def user_turn(start):

 #while True:

 user_input = input(f"Enter your numbers starting from {start}: ")

 numbers = list(map(int, user_input.split()))

 if all(start <= num <= start + 2 for num in numbers) and len(numbers) in [1, 2, 3]:

 return numbers

 else:

 print("Invalid input. Please enter 1 to 3 sequential numbers.")

def computer_turn(start):

 import random

 count = random.randint(1,3)

 numbers = list(range(start, start + count))

 print(f"Computer played: {', '.join(map(str, numbers))}")

 return numbers

def game():

 first_num = 1

 while first_num <=20:

 user_numbers = user_turn(first_num)

 first_num = first_num+len(user_numbers)

 if first_num > 20:

 print("You won!!!")

 break

 computer_numbers = computer_turn(first_num)

 first_num = first_num+len(computer_numbers)

 if first_num > 20:

 print("Computer won!!!")

 break

if __name__ =="__main__":

 game()

OUTPUT:

Enter your numbers starting from 1: 1 2

Computer played: 3, 4

Enter your numbers starting from 5: 5 6

Computer played: 7, 8

Enter your numbers starting from 9: 9 10

Computer played: 11, 12

Enter your numbers starting from 13: 13 14 15

Computer played: 16

Enter your numbers starting from 17: 17

Computer played: 18, 19

Enter your numbers starting from 20: 20

You won!!!

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this function

to print pascal triangle, where number of rows is the input

CODE:

def fact(num):

 if num == 0 or num == 1:

 return 1

 else:

 result = 1

 for i in range(2, num + 1):

 result = result*i

 return result

def ncr(n, r):

 if r > n or r < 0:

 return 0

 return fact(n) // (fact(r) * fact(n - r))

def print_pascal_triangle(rows):

 for n in range(rows):

 for r in range(n + 1):

 print(ncr(n, r), end=' ')

 print()

num_rows = int(input("Enter the number of rows for Pascal's Triangle: "))

print_pascal_triangle(num_rows)

OUTPUT:

Enter the number of rows for Pascal's Triangle: 10

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated elements with

frequency count in a list.

CODE:

def count_frequencies(numbers):

 frequency = {}

 for number in numbers:

 if number in frequency:

 frequency[number] += 1

 else:

 frequency[number] = 1

 return frequency

def print_repeated_elements(frequency):

 repeated = {num: count for num, count in frequency.items() if count > 1}

 if repeated:

 print("Repeated elements with their frequency: ")

 for num, count in repeated.items():

 print(f"{num}: {count}")

def main():

 user_input = input("Enter numbers: ")

 numbers = list(map(int, user_input.split(',')))

 frequency = count_frequencies(numbers)

 print_repeated_elements(frequency)

if __name__ == "__main__":

 main()

OUTPUT:

Enter numbers: 1,2,3,4,5,5,4,3,2,1

Repeated elements with their frequency:

1: 2

2: 2

3: 2

4: 2

5: 2

Question 4:-

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and perform

the addition of Matrices A & B and Print the results.

CODE:

def read_matrix_from_file(filename):

 matrix = []

 file = open("matrices.txt",'w+')

 with open(filename, 'w+') as file:

 for line in file:

 matrix.append(list(map(int, line.split())))

 file.close()

 return matrix

def add_matrices(A, B):

 result = [[2, 2], [2, 2]]

 for i in range(0):

 for j in range(0):

 result[i][j] = A[i][j] + B[i][j]

 return result

def print_matrix(matrix):

 for row in matrix:

 print(' '.join(map(str, row)))

def main():

 matrix_A = read_matrix_from_file('matrices.txt')[:2]

 matrix_B = read_matrix_from_file('matrices.txt')[2:4]

 result_matrix = add_matrices(matrix_A, matrix_B)

 print("Result of Matrix A + Matrix B:")

 print_matrix(result_matrix)

if __name__ == "__main__":

 main()

OUTPUT:

Result of Matrix A + Matrix B:

2 2

2 2

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator

CODE:

class Fraction:

 def __init__(self, numerator, denominator):

 if denominator == 0:

 raise ValueError("Denominator cannot be zero.")

 self.numerator = numerator

 self.denominator = denominator

 self.simplify()

 def simplify(self):

 from math import gcd

 common_divisor = gcd(self.numerator, self.denominator)

 self.numerator //= common_divisor

 self.denominator //= common_divisor

 def __add__(self, other):

 if not isinstance(other, Fraction):

 return NotImplemented

 new_numerator = (self.numerator * other.denominator) + (other.numerator * self.denominator)

 new_denominator = self.denominator * other.denominator

 return Fraction(new_numerator, new_denominator)

 def __str__(self):

 return f"{self.numerator}/{self.denominator}"

 def __repr__(self):

 return f"Fraction ({self.numerator}, {self.denominator})"

if __name__ == "__main__":

 f1 = Fraction(1,2)

 f2 = Fraction(3,4)

 result = f1 + f2

 print(f"{f1} + {f2} = {result}")

OUTPUT:

1/2 + 3/4 = 5/4

