10/30/24, 3:30 PM Assignment.ipynb - Colab

Question 1: Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits starting from 1 sequentially. The
computer can return either 1 or 2 or 3 next digits in sequence, starting from the max number played by the user. User enters the next 1 or 2 or 3
next digits in sequence, starting from the max number played by the computer. Whoever reaches 20 first wins the game. Note:

¢ the numbers should be in sequence starting from 1.
¢ minimum number user or computer should pick is at least 1 digit in sequence
¢ maximum number user or computer can pick only 3 digits in sequence

#Ans
import random

def is_sequential(numbers):
for i in range(len(numbers) - 1):
if numbers[i] + 1 != numbers[i + 1]:
return False
return True

p=0
c=0
while True:
if p>=20:
print('Playher Wins!!!")
break

if c>=20:
print('Computer Wins!!!")

break

ul = input('Player: ')
user_input = [int(x) for x in ul.split()]

start = user_input[@]
if (start == c+1) and len(user_input)<=3 and is_sequential(user_input)==True:

#p = num_validation(user_input)
p = user_input[-1]

move_length = random.randint(1,3)
computer_move = [p + i + 1 for i in range(move_length)]

print('computer:', computer_move)
c = computer_move[-1]

else:
print('Invalid"')

Start coding or generate with AI.

Question 2: Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this function to print pascal triangle,
where number of rows is the input

#Ans:

def pascal_triangle(n):

triangle = []

for i in range(n):
row = [1] * (i + 1)
for j in range(1, i):

row[j] = triangle[i - 1][]j - 1] + triangle[i - 1][7]

triangle.append(row)

return triangle

num= int(input('Enter no. of rows to compute Pascal triangle: '))
#num = 8

https://colab.research.google.com/drive/13TdhixnsoiBU-BWMJiHM6rI Ta8xPZpM8#scrollTo=nrcQeWzx3YWr&printMode=true 1/3

10/30/24, 3:30 PM Assignment.ipynb - Colab

print('no. of rows: ', num)
rows = pascal_triangle(num)
for r in rows:

print(r)

3% no. of rows: 8
2

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

(1, 4, 6, 4, 1]

[1, 5, 10, 10, 5, 1]

[1, 6, 15, 20, 15, 6, 1]

[1, 7, 21, 35, 35, 21, 7, 1]

Start coding or generate with AI.
Question 3: Read a list of n numbers during runtime. Write a Python program to print the repeated elements with frequency count in a list.

import ast
input_list = input('Enter list of numbers:"') # [1,1,2,2,3,3,5,5,5,7]
x = ast.literal_eval(input_list)

#x = [1,1,2,2,3,3,5,5,5,7]

print('input list: ', x)
frequency = {}
for n in x:
frequency[n] = frequency.get(n, 0)+1

for k, v in frequency.items():
print('Element’, k, "has come', v, 'times")

5% input list: [1, 1, 2, 2, 3, 3, 5, 5, 5, 7]
Element 1 has come 2 times
Element 2 has come 2 times
Element 3 has come 2 times

Element 5 has come 3 times

Element 7 has come 1 times

Start coding or generate with AI.

Question 4:- Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and perform the addition of Matrices A &
B and Print the results.

#Ans:
'file.txt'

13
6 8
72
9 12

H oH H O

import numpy as np
filename = 'file.txt'

with open(filename, 'r') as file:
lines = file.readlines()

matrix_A = [list(map(int, line.split())) for line in lines[:2]]
matrix_B = [list(map(int, line.split())) for line in lines[2:4]]

print('Matrix A:")
print(np.array(matrix_A), '\n')

print('Matrix B:")
print(np.array(matrix_B), ‘\n')

https://colab.research.google.com/drive/13TdhixnsoiBU-BWMJiHM6rI Ta8xPZpM8#scrollTo=nrcQeWzx3YWr&printMode=true

2/3

10/30/24, 3:30 PM Assignment.ipynb - Colab

print('Addition of Matrix A and Matrix B:')
print(np.add(matrix_A, matrix_B))

3% Matrix A:

[[1 3]
[6 8]]

Matrix B:

(L7 2]
[9 12]]

Addition of Matrix A and Matrix B:
[[8 5]
[15 20]]

Start coding or generate with AI.

Question 5:- Write a program that overloads the + operator so that it can add two objects of the class Fraction. Fraction can be considered of
the for P/Q where P is the numerator and Q is the denominator

class Fraction:

def __init_ (self, numerator, denominator):
self.numerator = numerator
self.denominator = denominator

def __add__ (self, other):
Calculate the numerator and denominator of the result
numerator = (self.numerator * other.denominator) + (other.numerator * self.denominator)
denominator = self.denominator * other.denominator
return float(numerator / denominator)

def _ str_ (self):
return f"{self.numerator}/{self.denominator}"

fracl = Fraction(2,3)
frac2 = Fraction(4,8)

print('Fraction 1: ', fracl)
print('Fraction 2: ', frac2)
print('Addition of 2 fractions: ', fracl+frac2)

5% Fraction 1: 2/3

Fraction 2: 4/8
Addition of 2 fractions: 1.1666666666666667

https://colab.research.google.com/drive/13TdhixnsoiBU-BWMJiHM6rI Ta8xPZpM8#scrollTo=nrcQeWzx3YWr&printMode=true 3/3

