
Assignment – 8

 Gumma V L Prasad
 (H.T.No: 2406CYS107)

1. Imagine you are a cybersecurity analyst working for a large multinational

corporation. One morning,
your team receives an urgent report about a potential security breach in the

company's network.
The IT department has noticed unusual network activity originating from a
particular IP address.

Your team has been tasked with investigating this incident to determine if it
poses a threat to the

organization's network security.
Assignment Question:
1. Using the Python library Scapy, analyze the network packets associated with

the suspicious IP
address provided.

Expected Procedure:
1. A detailed explanation of how Scapy can be utilized to capture and dissect
network packets.

2. A step-by-step breakdown of the process you followed to capture and analyze
the network

traffic.
3. Identification and interpretation of any suspicious or anomalous network
behavior observed in

the captured packets.
4. Recommendations for mitigating the identified security risks and securing the

network against
similar threats in the future.
Expected Code:

1. Write a python code to Network Packet Analysis with Scapy

Answer :

1. Explanation of Using Scapy to Capture and Dissect Network Packets

Scapy is a powerful Python library used for network packet manipulation, including crafting,

sending, sniffing, and dissecting network packets. Here's how it can be utilized:

• Packet Sniffing: Capturing packets on the network interface for analysis.

• Packet Dissection: Breaking down the captured packets to analyze each layer and its

respective fields.

• Protocol Support: Understanding and dissecting various network protocols (TCP,

UDP, ICMP, etc.).

2. Step-by-Step Breakdown of Capturing and Analyzing Network Traffic

Step 1: Install Scapy

pip install scapy

Step 2: Import Scapy and Start Capturing Packets

from scapy.all import sniff, IP

Define the suspicious IP address
suspicious_ip = '192.168.1.100'

Function to handle each captured packet
def packet_callback(packet):
 if IP in packet:
 ip_src = packet[IP].src
 ip_dst = packet[IP].dst
 if ip_src == suspicious_ip or ip_dst == suspicious_ip:
 print(packet.summary())

Capture packets (e.g., for 60 seconds)
packets = sniff(prn=packet_callback, timeout=60)

Step 3: Analyze the Captured Packets

from scapy.all import rdpcap

Read the captured packets from a file (if saved)
packets = rdpcap('captured_packets.pcap')

for packet in packets:
 if IP in packet:
 ip_src = packet[IP].src
 ip_dst = packet[IP].dst
 if ip_src == suspicious_ip or ip_dst == suspicious_ip:
 print(packet.show())

3. Identification and Interpretation of Suspicious Behavior

While inspecting the packet details:

• Unusual Traffic Patterns: High volume of traffic from/to the suspicious IP.

• Unusual Ports: Communication over uncommon ports that might be used for

malicious purposes.

• Payload Analysis: Anomalous payload content indicating potential exploitation or

data exfiltration.

4. Recommendations for Mitigating Identified Risks

• Implement Network Segmentation: Restrict traffic flow between sensitive parts of the

network.

• Intrusion Detection and Prevention Systems (IDPS): Deploy systems to detect and

block suspicious activities.

• Regular Network Audits: Conduct periodic reviews of network traffic and

configurations.

• Access Controls: Ensure strict access controls and monitor user activities.

• Patch Management: Keep systems updated to mitigate vulnerabilities.

Code: Network Packet Analysis with Scapy

from scapy.all import sniff, IP

Define the suspicious IP address
suspicious_ip = '192.168.1.100'

Function to handle each captured packet
def packet_callback(packet):
 if IP in packet:
 ip_src = packet[IP].src
 ip_dst = packet[IP].dst
 if ip_src == suspicious_ip or ip_dst == suspicious_ip:
 print(packet.summary())
 # Optionally save to a file for later analysis
 with open('captured_packets.pcap', 'ab') as f:
 f.write(bytes(packet))

Capture packets (e.g., for 60 seconds)
packets = sniff(prn=packet_callback, timeout=60)

Optionally, read captured packets from a file for further analysis
from scapy.all import rdpcap

packets = rdpcap('captured_packets.pcap')

for packet in packets:
 if IP in packet:
 ip_src = packet[IP].src
 ip_dst = packet[IP].dst
 if ip_src == suspicious_ip or ip_dst == suspicious_ip:
 packet.show()

2.Imagine you are working as a cybersecurity analyst at a prestigious firm.
Recently, your company

has been experiencing a surge in cyber attacks, particularly through phishing
emails and websites.

These attacks have not only compromised sensitive information but also
tarnished the reputation of
the company.

In light of these events, your team has been tasked with developing a robust
solution to detect and

mitigate phishing websites effectively. Leveraging your expertise in Python
programming and

cybersecurity, your goal is to create a program that can accurately identify
phishing websites based
on various features and indicators.

Assignment Task:
Using the Python programming language, develop a phishing website detection

system that
analyzes website characteristics and determines the likelihood of it being a
phishing site.

Expected Procedure:
1. Accept 2 web URL. One real and another one phishing.

2. Analyze the data from both the websites.
3. Identify the phishing site.
Expected Code:

1. Phishing Website Detection with Python

Answer:

To develop a phishing website detection system using Python, we'll follow these steps:

1. Collect Data: Accept two URLs, one legitimate and one phishing.

2. Extract Features: Analyze various characteristics of the websites.

3. Build a Model: Use the extracted features to determine the likelihood of a website

being a phishing site.

Procedure

1. Accept URLs

We will take two URLs from the user, one real and one phishing.

2. Analyze Data from Websites

Extract features that are indicative of phishing websites. Common features include:

• URL length

• Presence of special characters

• Use of HTTPS

• Domain age

• IP address usage

• Number of external links

3. Identify the Phishing Site

Use a rule-based approach to identify phishing characteristics or employ a simple machine

learning model for classification.

Expected Code

Here's a Python script to perform phishing website detection:

Step 1: Import Required Libraries

import requests

from urllib.parse import urlparse

import whois

from datetime import datetime

from sklearn.ensemble import RandomForestClassifier

import numpy as np

Step 2: Define Feature Extraction Functions

def get_domain_age(domain_name):

 try:

 whois_info = whois.whois(domain_name)

 creation_date = whois_info.creation_date

 if isinstance(creation_date, list):

 creation_date = creation_date[0]

 age = (datetime.now() - creation_date).days

 return age

 except:

 return -1

def extract_features(url):

 features = []

 # URL Length

 features.append(len(url))

 # Presence of special characters

 special_characters = ['@', '-', '_', '.', '~', '%']

 features.append(sum([1 for char in url if char in special_characters]))

 # Use of HTTPS

 features.append(1 if urlparse(url).scheme == 'https' else 0)

 # Domain age

 domain = urlparse(url).netloc

 features.append(get_domain_age(domain))

 # Number of external links (dummy feature for example)

 try:

 response = requests.get(url)

 features.append(response.text.count('href="http'))

 except:

 features.append(-1)

 return features

Step 3: Accept URLs and Extract Features

legit_url = input("Enter a legitimate URL: ")

phishing_url = input("Enter a phishing URL: ")

legit_features = extract_features(legit_url)

phishing_features = extract_features(phishing_url)

print("Legit URL Features:", legit_features)

print("Phishing URL Features:", phishing_features)

Step 4: Train a Simple Model (Optional)

For a more robust solution, we can use a pre-trained model. Here, we demonstrate a simple

training setup using the extracted features:

Example data - In practice, this would be a larger, pre-labeled dataset

X_train = [

 legit_features,

 phishing_features

]

y_train = [0, 1] # 0 = Legitimate, 1 = Phishing

Train a simple Random Forest Classifier

clf = RandomForestClassifier()

clf.fit(X_train, y_train)

Predict on new data

new_url = input("Enter a URL to check: ")

new_features = extract_features(new_url)

prediction = clf.predict([new_features])[0]

if prediction == 1:

 print("The URL is likely a phishing site.")

else:

 print("The URL is likely legitimate.")

Conclusion

This script provides a basic framework for detecting phishing websites using URL features.

For real-world applications, you should expand the feature set, use a larger labeled dataset for

training, and consider more sophisticated models and techniques.

