
SCHOOL OF CONTINUING AND DISTANCE EDUCATION

JAWAHARLAL NEHRU TECHNOLOGICALUNIVERSITY - HYDERABAD

Kukatpally, Hyderabad – 500 085, Telangana, India.

SIX MONTH ONLINE CERTIFICATE COURSES – 2023

CYBER SECURITY - ASSIGNMENT - 08

1Q) Using the Python library Scapy, analyze the network packets associated with the
suspicious IP address provided.

Ans:

from scapy.all import *

# Define a function to analyze packets

def analyze_packets(packet):

if IP in packet:

ip_src = packet[IP].src

ip_dst = packet[IP].dst

protocol = packet[IP].proto

print(f"Source IP: {ip_src}, Destination IP: {ip_dst}, Protocol: {protocol}")

# Sniff packets and apply the analyze_packets function

sniff(prn=analyze_packets, count=10) # Adjust count as needed

Scapy is a powerful Python library that allows for the manipulation of

network packets at a low level. It can be used to create, manipulate, decode, and

analyze network packets. Here's a detailed explanation of how Scapy can be

utilized to capture and dissect network packets:

Capturing Packets:

Scapy provides a function called sniff() to capture packets from the network

interface. This function allows you to specify various parameters such as the

number of packets to capture, a filter to apply to captured packets, and a

callback function to process each captured packet.

Dissecting Packets:

Once packets are captured, Scapy provides a wide range of protocols and layers

that can be dissected and analyzed. For example, you can access and extract



information from the Ethernet, IP, TCP, UDP, ICMP, DNS, and other layers of

the packet.

Crafting Packets:

Scapy allows you to create custom packets by specifying the values for various

fields in different protocol layers. This is useful for testing network protocols,

creating custom network tools, or even crafting network attacks (be responsible!).

Manipulating Packets:

Scapy enables you to modify existing packets by changing their fields or adding

new layers. This can be useful for testing network devices or analyzing the

behavior of network protocols.

Analyzing Packets:

Scapy provides various methods for analyzing packet contents, such as

summarizing packets, extracting specific fields, calculating checksums, and even

decoding packet payloads.

Some common signs of suspicious or anomalous network behavior that can

be identified by analyzing captured packets:

Unusual Source or Destination IP Addresses:

Packets originating from or sent to unexpected IP addresses, especially those

associated with known malicious actors or blacklisted addresses, could indicate

suspicious activity.

Unusual Protocol Usage:

Detection of unusual protocols or unexpected protocol combinations in the

network traffic may indicate malicious activity or misconfiguration.

Large Amounts of Outbound Traffic :

Abnormally high volumes of outbound traffic from a particular host may suggest

that it has been compromised and is being used for malicious purposes such as

participating in a botnet or launching a DDoS attack.

Unusual Port Activity:

Communication on non-standard or uncommon ports, especially when associated

with well-known services or protocols, could be indicative of suspicious

behavior.

Unexpected Protocol Behavior:



Detection of protocol anomalies, such as unusual packet sizes, unexpected

sequence numbers, or abnormal handshake patterns, may indicate attempted

exploitation or evasion techniques.

Repeated Access Attempts:

Multiple failed login attempts, repeated connection requests, or excessive

scanning activity directed at a particular host or network segment may suggest a

reconnaissance or intrusion attempt.

Unexpected Payload Content:

Examination of packet payloads for suspicious content, such as unexpected

commands, encoded data, or known malware signatures, can help identify

malicious activity.

Signs of Data Exfiltration:

Detection of large, uncharacteristic transfers of sensitive data, unusual file types

being transmitted, or encrypted communication channels established with

suspicious endpoints may indicate data exfiltration attempts.

Spoofed or Altered Packet Headers:

Analysis of packet headers for signs of IP address spoofing, forged source or

destination addresses, or manipulated packet attributes can reveal attempts to

disguise the origin or nature of network traffic.

Unusual Timing Patterns :

Examination of packet arrival times or frequency of network activity for

irregular patterns, such as sudden spikes in traffic or prolonged periods of

inactivity, may indicate automated scanning or coordinated attacks.

To mitigate the identified security risks and secure the network against

similar threats in the future, here are some recommendations:

Implement Access Controls:

Enforce strong access controls by using firewalls, access control lists (ACLs),

and network segmentation to restrict unauthorized access to critical network

resources.

Update and Patch Systems Regularly:

Keep all systems, including servers, routers, switches, and endpoints, up to date

with the latest security patches and software updates to address known

vulnerabilities and minimize the risk of exploitation.



Deploy Intrusion Detection and Prevention Systems (IDPS):

Implement IDPS solutions to monitor network traffic in real-time, detect

suspicious or malicious activity, and automatically block or mitigate potential

threats before they can cause harm.

Enable Network Logging and Monitoring:

Enable comprehensive logging and monitoring of network traffic, system events,

and security-related activities to facilitate timely detection, analysis, and

response to security incidents.

Educate and Train Employees:

Provide regular cybersecurity awareness training to employees to raise

awareness of common security threats, best practices for safe computing, and

procedures for reporting suspicious activity or incidents.

Use Strong Authentication Mechanisms:

Implement multi-factor authentication (MFA) and strong password policies to

enhance the security of user accounts and prevent unauthorized access to

sensitive information.

Encrypt Network Traffic:

Use encryption protocols such as SSL/TLS for securing sensitive data in transit

and implementing virtual private networks (VPNs) to create secure

communication channels for remote access and data exchange.

Perform Regular Security Audits and Assessments:

Conduct periodic security audits and vulnerability assessments to identify and

remediate security weaknesses, misconfigurations, and compliance gaps within

the network infrastructure.

Establish Incident Response Procedures:

Develop and document incident response procedures to guide the response to

security incidents, including the containment, eradication, and recovery

processes, and ensure that all relevant stakeholders are aware of their roles and

responsibilities.

Engage with Security Experts:

Consider engaging with cybersecurity experts, consultants, or managed security

service providers (MSSPs) to perform security assessments, provide guidance on

best practices, and assist in implementing advanced security controls.



2Q) Using the Python programming language, develop a phishing website

detection system that analyzes website characteristics and determines the

likelihood of it being a phishing site.

Ans;

import requests

from bs4 import BeautifulSoup

import re

def fetch_html(url):

try:

response = requests.get(url)

if response.status_code == 200:

return response.text

else:

return None

except:

return None

def extract_features(html):

features = {}

if html is None:

return features

soup = BeautifulSoup(html, 'html.parser')

# Count number of links

links = soup.find_all('a')

features['num_links'] = len(links)

# Count number of forms

forms = soup.find_all('form')

features['num_forms'] = len(forms)

# Check for presence of JavaScript



scripts = soup.find_all('script')

features['has_js'] = len(scripts) > 0

# Check for presence of 'submit' button in forms

submit_buttons = soup.find_all('input', {'type': 'submit'})

features['has_submit_button'] = len(submit_buttons) > 0

# Check for presence of URL in action attribute of forms

for form in forms:

action = form.get('action')

if action and re.match(r'^https?:// ', action):

features['form_has_https_action'] = True

break

else:

features['form_has_https_action'] = False

return features

def analyze_phishing(features):

# Phishing detection rules can be implemented here

# For demonstration, we'll just use a simple heuristic

if features['has_js'] or features['num_links'] > 10:

return True

else:

return False

def main():

url = input("Enter the URL to analyze: ")

html = fetch_html(url)

if html:

features = extract_features(html)

is_phishing = analyze_phishing(features)

if is_phishing:

print("Warning: The website is likely a phishing site!")

else:

print("The website seems safe.")

else:



print("Failed to fetch HTML from the provided URL.")

if __name__ == "__main__":

main()


