
Enter 1, 2, or 3 numbers in sequence: 1
You play: [1]
Computer plays: [2, 3]
Enter 1, 2, or 3 numbers in sequence: 2
Invalid input. Please enter 1 to 3 sequential numbers starting from the last number.
Enter 1, 2, or 3 numbers in sequence: 3
Invalid input. Please enter 1 to 3 sequential numbers starting from the last number.
Enter 1, 2, or 3 numbers in sequence: 4
You play: [4]
Computer plays: [5]
Enter 1, 2, or 3 numbers in sequence: 5
Invalid input. Please enter 1 to 3 sequential numbers starting from the last number.
Enter 1, 2, or 3 numbers in sequence: 6
You play: [6]
Computer plays: [7]
Enter 1, 2, or 3 numbers in sequence: 7
Invalid input. Please enter 1 to 3 sequential numbers starting from the last number.
Enter 1, 2, or 3 numbers in sequence: 8
You play: [8]
Computer plays: [9]
Enter 1, 2, or 3 numbers in sequence: 10
You play: [10]
Computer plays: [11, 12]
Enter 1, 2, or 3 numbers in sequence: 13
You play: [13]
Computer plays: [14, 15]
Enter 1, 2, or 3 numbers in sequence: 16
You play: [16]
Computer plays: [17, 18, 19]
Enter 1, 2, or 3 numbers in sequence: 20

In [1]: import random
def computer_turn(current_number):
 max_pick = min(3, 20 - current_number)
 computer_choice = random.randint(1, max_pick)
 next_numbers = list(range(current_number + 1, current_number + 1 + computer_choice))
 print(f"Computer plays: {next_numbers}")
 return next_numbers[-1]
def user_turn(current_number):
 while True:
 try:
 user_input = input("Enter 1, 2, or 3 numbers in sequence: ").strip()
 user_choice = list(map(int, user_input.split()))
 if (1 <= len(user_choice) <= 3 and
 all(x == current_number + i + 1 for i, x in enumerate(user_choice))
 user_choice[-1] <= 20):
 print(f"You play: {user_choice}")
 return user_choice[-1]
 else:
 print("Invalid input. Please enter 1 to 3 sequential numbers starting fr
 except ValueError:
 print("Invalid input. Please enter numbers only.")
def number_game():
 current_number = 0
 while current_number < 20:
 current_number = user_turn(current_number)
 if current_number >= 20:
 print("Congratulations! You reached 20 and won the game.")
 break
 current_number = computer_turn(current_number)
 if current_number >= 20:
 print("Computer reached 20 and won the game. Better luck next time!")
 break
number_game()

You play: [20]
Congratulations! You reached 20 and won the game.

In []:

Enter the number of rows for Pascal's Triangle: 6
 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1

In [3]: def factorial(num):
 if num == 0 or num == 1:
 return 1
 return num * factorial(num - 1)
def ncr(n, r):
 return factorial(n) // (factorial(r) * factorial(n - r))
def print_pascal_triangle(rows):
 for i in range(rows):
 print(" " * (rows - i), end="")
 for j in range(i + 1):
 print(ncr(i, j), end=" ")
 print()
rows = int(input("Enter the number of rows for Pascal's Triangle: "))
print_pascal_triangle(rows)

In []:

In []:

Enter the number of elements in the list: 5
Enter a number: 1
Enter a number: 2
Enter a number: 3
Enter a number: 3
Enter a number: 2
Repeated elements with their frequency count:
2: 2
3: 2

In [2]: from collections import Counter
n = int(input("Enter the number of elements in the list: "))
numbers = []
for _ in range(n):
 number = int(input("Enter a number: "))
 numbers.append(number)
frequency_count = Counter(numbers)
print("Repeated elements with their frequency count:")
for element, count in frequency_count.items():
 if count > 1:
 print(f"{element}: {count}")

Matrix A:
10 2
5 4

Matrix B:
8 6
9 8

Matrix A + B:
18 8
14 12

In [9]: def read_matrix(filename):
 with open(filename, 'r') as file:
 lines = file.readlines()
 matrix_a = [list(map(int, lines[i].split())) for i in range(2)]
 matrix_b = [list(map(int, lines[i].split())) for i in range(2, 4)]
 return matrix_a, matrix_b
def add_matrices(matrix_a, matrix_b):
 result = [[0, 0], [0, 0]]
 for i in range(2):
 for j in range(2):
 result[i][j] = matrix_a[i][j] + matrix_b[i][j]
 return result
def print_matrix(matrix, name):
 print(f"Matrix {name}:")
 for row in matrix:
 print(" ".join(map(str, row)))
 print()

In [10]: filename = "matrices.txt"
matrix_a, matrix_b = read_matrix(filename)
result_matrix = add_matrices(matrix_a, matrix_b)

In [11]: print_matrix(matrix_a, "A")
print_matrix(matrix_b, "B")
print_matrix(result_matrix, "A + B")

In []:

In []:

The result of adding 1/2 and 1/3 is: 5/6

In [1]: from math import gcd
class Fraction:
 def _init_(self, numerator, denominator):
 self.numerator = numerator
 self.denominator = denominator
 def _add_(self, other):
 if isinstance(other, Fraction):
 new_nemerator = (self.numerator * other.denominator + other.numerator * self
 new_denominator = self.denominator * other.denominator
 common_divisor = gcd(new_numerator, new_denominator)
 new_numerator //= commom_divisor
 new_denominator //= common_divisor
 return Fraction(new_numerator, new_denominator)
 else:
 return NotImplemented
 def _str_(self):
 return f"{self.numerator}/{self.denominator}"

In [2]: from fractions import Fraction
fraction1 = Fraction(1, 2)
fraction2 = Fraction(1, 3)
result = fraction1 + fraction2
print(f"The result of adding {fraction1} and {fraction2} is: {result}")

In []:

