In [28]:

In [29]:

In [30]:

M

M

M

out[30]:

In [31]:

M

Heart Disease Data Usage with Classification and Regression

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

df=pd.read_csv("heart.csv")
df.head()

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

0 52 1 0 125 212 0 1 168 0 1.0 2 2 3 0
1 &3 1 0 140 203 1 0 155 1 3.1 0 O 3 0
2 70 1 0 145 174 0 1 125 1 2.6 0 0 3 0
3 61 1 0 148 203 0 1 161 0 0.0 2 1 3 0
4 62 0 0 138 294 1 1 106 0 1.9 1 3 2 0

print("Percentage of patients with Heart disease:{:.2f}%".format(len(df[df.target==1])*100/1len(df.target)))

print("Percentage of patients with no Heart disease:{:.2f}%".format(len(df[df.target==0])*100/1len(df.target)))

Percentage of patients with Heart disease:51.32%
Percentage of patients with no Heart disease:48.68%

In [32]: M sns.countplot(x='sex',data=df,palette="dark")
plt.legend(["Female","Male"])
plt.xlabel('sex(©® = Female, 1 = Male)"')
plt.show()

700 1 WM Female

GO0

500
£ 400 4
=]

300 1

200 1

100 1

sex(0 = Female, 1 = Male)

Observation: Male Members were high Disease Rate

In [33]: Dl print("Percentage of Female Patients:{:.2f}%".format(len(df[df.sex==0])*100/1len(df.sex)))
print("Percentage of Male Patients:{:.2f}%".format(len(df[df.sex==1])*100/len(df.sex)))

Percentage of Female Patients:30.44%
Percentage of Male Patients:69.56%

In [34]:

M pd.crosstab(df.age,df.target).plot(kind="bar',figsize = (20, 8))
plt.title('Heart Disease Frequency for Ages')
plt.ylabel('Frequency")

plt.show()
Heart Disease Freguency for Ages
target
= 0
1
40 4
30
-
g
5
]
= o]
10 4
04
=8B R

& 54
55
56
57
58
59
50
61
62
63
B
&5
66

Observation: Male At 58 Age More Frequency of Getting Heart Disease, Female at 54 Age max Risk

In [35]: M pd.crosstab(df.sex,df.target).plot(kind="'bar',figsize = (10, 5))
plt.title('Heart Disease Frequency based on sex')
plt.xticks(rotation=0)
plt.xlabel('Sex(@ = Female, 1 = Male)"')
plt.ylabel('Frequency")
plt.show()

Heart Disease Frequency based on sex

Freguency
=2 W
=1 =1

th
=1

=
=1

Sexil = Female, 1 = Male)

In [36]: M x

df.drop(['target'], axis = 1)

In [37]: M y = df.target.values

In [38]: M x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.3,random_state=0)

Logistic Regression Usage

In [39]: M accuracies = {}

1r = LogisticRegression()
1r.fit(x_train,y_train)
acc = lr.score(x_test,y_ test)*100

accuracies['Logistic Regression'] = acc
print("Test Accuracy Logistic {:.2f}%".format(acc))

Test Accuracy Logistic 87.01%

C:\Users\I5262\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:814: ConvergenceWarning: 1lbfgs failed
to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-1learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessi
ng.html)
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit-learn.org/stable/
modules/linear_model.html#logistic-regression)
n_iter_i = _check_optimize_result(

K Nearest Neighbor

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

In [40]: M # KNN Model
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 2) # n_neighbors means k
knn.fit(x_train, y_train)
prediction = knn.predict(x_test)
acc=knn.score(x_test, y_test)*100
accuracies['KNN'] = acc
#print("{} KNN Score: {:.2f}%".format(acc))
print("Test Accuracy KNN {:.2f}%".format(acc))

Test Accuracy KNN 92.53%

Support Vector Classifier

In [41]: M from sklearn.svm import SVC
svm = SVC(random_state = 1)
svm.fit(x_train, y_train)

acc = svm.score(x_test,y test)*100

accuracies['SVM'] = acc
print("Test Accuracy of SVM Algorithm: {:.2f}%".format(acc))

Test Accuracy of SVM Algorithm: 75.00%
Naive Bayes Algorithm

In [42]: M from sklearn.naive_bayes import GaussianNhB
nb = GaussianNB()
nb.fit(x_train, y_train)

acc = nb.score(x_test,y test)*100

accuracies['Naive Bayes'] = acc
print("Test Accuracy of Naive Bayes: {:.2f}%".format(acc))

Test Accuracy of Naive Bayes: 84.42%

In [43]: M # Decison Tree
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(x_train, y_train)

acc = dtc.score(x_test, y test)*100
accuracies['Decision Tree'] = acc
print("Test Accuracy Decision Tree {:.2f}%".format(acc))

Test Accuracy Decision Tree 100.00%

In [44]: M # Random Forest Classification
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators = 1000, random_state = 2)
rf.fit(x_train, y_train)

acc = rf.score(x_test,y test)*100

accuracies['Random Forest'] = acc
print("Test Accuracy Random Forest : {:.2f}%".format(acc))

Test Accuracy Random Forest : 100.00%

Observations:

1.Test Accuracy Logistic : 87.01% 2.Test Accuracy KNN : 92.53% 3.Test Accuracy of SVM Algorithm: 75.00% 4.Test Accuracy of Naive Bayes:
84.42% 5.Test Accuracy Decision Tree 100.00% 6.Test Accuracy Random Forest : 100.00%

So Decision Tree and Random Forest Recorded High Accuracy in this Heart Disease Data Set is 100% Next Best Accuracy Recorded By KNN is
92.53% Next Best Accuracy is 87.01%

