In []:

#0.1

In [1]:

from nltk.data import load
from nltk.tokenize.treebank import TreebankWordTokenizer

In [5]:

from nltk.tokenize import word_tokenize

In [11]:

import re

import pandas as pd

import nltk

from nltk.tokenize import WordPunctTokenizer

nltk.download('stopwords"')

from nltk.corpus import stopwords

needed for nltk.pos_tag function nltk.download(’averaged _perceptron_tagger’)
nltk.download('wordnet")

from nltk.stem import WordNetLemmatizer

[nltk_data] Downloading package stopwords to

[nltk_data] C:\Users\I5262\AppData\Roaming\nltk data...
[nltk_data] Unzipping corporalstopwords.zip.

[nltk_data] Downloading package wordnet to

[nltk_data] C:\Users\I5262\AppData\Roaming\nltk_data...

In [13]:

Load text

filename = 'novel.txt'

file = open(filename, 'rt')
text = file.read()
print(text)

file.close()

Gregor then turned to look out the window at the dull weather.

Drops of rain could be heard hitting the pane, which made him feel
quite sad. "How about if I sleep a little bit longer and forget all
this nonsense", he thought, but that was something he was unable to
do because he was used to sleeping on his right, and in his present
state couldn't get into that position. However hard he threw
himself onto his right, he always rolled back to where he was. He
must have tried it a hundred times, shut his eyes so that he
wouldn't have to look at the floundering legs, and only stopped when
he began to feel a mild, dull pain there that he had never felt
before.

"Oh, God", he thought, "what a strenuous career it is that I've
chosen! Travelling day in and day out. Doing business like this
takes much more effort than doing your own business at home, and on
top of that there's the curse of travelling, worries about making
train connections, bad and irregular food, contact with different
people all the time so that you can never get to know anyone or
become friendly with them. It can all go to Hell!" He felt a

AlS~hd+ G+~ o iin An lha s AT Twvre miicrlhAad hamecATL ~TAdTvr in An lha~ LA~
In [14]:

word_punct_token = WordPunctTokenizer().tokenize(text)

In [15]:

clean_token=[]
for token in word_punct_token:
token = token.lower()
remove any value that are not alphabetical
new_token = re.sub(r'[?a-zA-Z]+', "', token)
remove empty value and single character value
if new_token != "" and len(new_token) >= 2:
vowels=len([v for v in new_token if v in "aeiou"])
if vowels != @: # remove Lline that only contains consonants
clean_token.append(new_token)

In [16]: M

Get the List of stop words

stop_words = stopwords.words('english')

add new stopwords to the Llist
stop_words.extend(["could","though","would","also", "many", "'much'])
print(stop_words)

Remove the stopwords from the List of tokens

tokens = [x for x in clean_token if x not in stop_words]

['i', 'me', 'my', 'myself', 'we', 'our', ‘'ours', 'ourselves', ‘'you', "yo
u're", "you've", "you'll", "you'd", 'your', ‘'yours', ‘'yourself', 'yoursel
ves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'hers
elf', "it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs’,
"themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll",
"these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'bein
g', 'have', 'has', 'had', 'having', 'do', ‘'does', 'did', 'doing', 'a', 'a
n', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while’,
‘of', 'at', 'by', 'for', 'with', 'about', 'against', 'between’', 'into’',
"through', ‘'during', 'before', 'after', 'above', 'below', 'to', 'from’,
‘up', 'down', 'in', ‘'out', 'on', 'off', 'over', 'under', 'again', 'furthe
r', '"then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'al
1', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'suc
h', 'no', 'nor', 'not', 'only', 'own', ‘'same', 'so', ‘'than', 'too', 'ver
y', 's', 't', 'can', 'will', 'just', ‘'don', "don't", 'should', "should'v
e", 'now', ‘d', '11', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't",
‘couldn’', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "had
n't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'might
n', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't",
'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "wo
n‘t", 'wouldn', "wouldn't", 'could', 'though', 'would', 'also', 'many’,
‘much’]

In [19]: M

from nltk.tokenize import sent_tokenize, word_tokenize

In [20]: M

stop_words = set(stopwords.words("english"))

In [21]: M

filtered_list = []

In [23]: M

worf_quote = "Sir, I protest. I am not a merry man!"

In [24]:

words_in_quote = word_tokenize(worf_quote)
words_in_quote

out[24]:

['sipr*, *',', 'I', 'protest', '.', 'I', 'am', 'not', 'a', 'merry', 'man',
l!l]

In [25]:

for word in words_in_quote:
if word.casefold() not in stop_words:
filtered_list.append(word)

In [26]:

stop_words = set(stopwords.words("english"))

In [29]:

filtered_list = [
word for word in words_in quote if word.casefold() not in stop_words

]

In [30]:

filtered list

Out[30]:

‘Sir', ',', 'protest', '.', ‘merry', 'man', '!’
P

In [31]:

from nltk.stem import PorterStemmer

In [32]:

from nltk.tokenize import word_tokenize

In [33]:

stemmer = PorterStemmer()

In [34]:

string_for_stemming =
The crew of the USS Discovery discovered many discoveries.
Discovering is what explorers do."""

In [35]:

words = word_tokenize(string_for_stemming)

In [36]:

words

out[36]:

['The’,
‘crew',
‘of',
"the',
'uss',
'Discovery’,
'discovered’,
'many’,
'discoveries’,

v '
)

‘Discovering’,
'is',

'what',
"explorers’,
‘do’,

]

In [37]:

stemmed_words = [stemmer.stem(word) for word in words]

In [38]:

stemmed_words

out[38]:

["the',
‘crew',
‘of',

"the',
'uss',
‘discoveri’,
"discov’,
'mani',
'discoveri’,

' v
J

'discov’,
'is',
'what ',
"explor’,
"do’,

s

In [39]:

#0.2

In [42]:

from sklearn.feature_extraction.text import TfidfVectorizer

corpus = [
'"Umapavan Submitted this Assignment',
'3rd Subject on data Science Courses for data Certification',
'Parallel Processing Large File in Python',
'NLP is Having Good Raise You Must Know For data science’,
]

vectorizer = TfidfVectorizer()

TD-IDF Matrix
X = vectorizer.fit_transform(corpus)

extracting feature names
tfidf_tokens = vectorizer.get feature names_out()

In [43]:
import pandas as pd

result = pd.DataFrame(
data=X.toarray(),
index=["Docl", "Doc2", "Doc3", "Doc4"],
columns=tfidf_tokens

)
result
Out[43]:

3rd assignment certification courses data file for good
Doc1 0.000000 0.5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Doc2 0.338457 0.0 0.338457 0.338457 0.533687 0.000000 0.266844 0.000000
Doc3 0.000000 0.0 0.000000 0.000000 0.000000 0.408248 0.000000 0.000000
Doc4 0.000000 0.0 0.000000 0.000000 0.251021 0.000000 0.251021 0.318388

4 rows x 26 columns

