
1. Text Classification of News Articles using NLP.

 Article Id – Article id unique given to the record

 Article – Text of the header and article

 Category – Category of the article (tech, business, sport, entertainment, politics)

 Consider BBC News as corpus for implementing question 1

Text Classification of News Articles

Know about Data

For the task of news classification with machine learning, I have collected a

dataset from Kaggle, which contains news articles including their headlines and

categories.

Data Fields

• Article Id – Article id unique given to the record

• Article – Text of the header and article

• Category – Category of the article (tech, business, sport, entertainment,

politics)

Data Cleaning and Data Preprocessing

 Data preprocessing is the process of transforming raw data into an

understandable format. It is also an important step in data mining as we cannot

work with raw data. The quality of the data should be checked before applying

machine learning or data mining algorithms.

https://docs.google.com/spreadsheets/d/1fvhiqN7b6E3j697F_LzR9YpJmPTrlHPz/edit?usp=sharing&ouid=102571066663734139638&rtpof=true&sd=true

Import Libraries

let’s import the necessary Python libraries and the dataset that we need for this

task.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import re

import nltk

from nltk.corpus import stopwords

nltk.download('stopwords')

from nltk.stem import PorterStemmer

from nltk.stem import WordNetLemmatizer

nltk.download('wordnet')

from nltk.tokenize import word_tokenize

from nltk.tokenize import sent_tokenize

nltk.download('punkt')

from wordcloud import WordCloud

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import make_scorer, roc_curve, roc_auc_score

from sklearn.metrics import precision_recall_fscore_support as score

from sklearn.metrics.pairwise import cosine_similarity

from sklearn.multiclass import OneVsRestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC, LinearSVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB,MultinomialNB,BernoulliNB

Import Dataset

Import the dataset which we will have to use.

Shape of Dataset

Check the shape (row and column) of the dataset.

dataset.shape

Check Information of Columns of Dataset
dataset.info()

Count Values of Categories
There are five news categories i.e. Sports, Business, Politics, Entertainment, Tech.

dataset['Category'].value_counts()

Convert Categories Name into Numerical Index
Convert the given news categories into categorical values.

Associate Category names with numerical index and save it in new column

CategoryId
target_category = dataset['Category'].unique()
print(target_category)

dataset['CategoryId'] = dataset['Category'].factorize()[0]
dataset.head()

Show Category’s Name w.r.t Category ID
Here you can show that news category’s name with respect to the following unique
category ID.

Create a new pandas dataframe "category", which only has unique Categories,

also sorting this list in order of CategoryId values
category = dataset[['Category',

'CategoryId']].drop_duplicates().sort_values('CategoryId')
category

Exploratory Data Analysis (EDA)
In data mining, Exploratory Data Analysis (EDA) is an approach to analyzing datasets to
summarize their main characteristics, often with visual methods. EDA is used for seeing
what the data can tell us before the modeling task. It is not easy to look at a column of

numbers or a whole spreadsheet and determine important characteristics of the data. It
may be tedious, boring, and/or overwhelming to derive insights by looking at plain
numbers. Exploratory data analysis techniques have been devised as an aid in this
situation.

Visualizing Data
The below graph shows the news article count for category from our dataset.

dataset.groupby('Category').CategoryId.value_counts().plot(kind = "bar", color =

["pink", "orange", "red", "yellow", "blue"])
plt.xlabel("Category of data")
plt.title("Visulaize numbers of Category of data")
plt.show()

fig = plt.figure(figsize = (5,5))
colors = ["skyblue"]
business = dataset[dataset['CategoryId'] == 0]
tech = dataset[dataset['CategoryId'] == 1]

politics = dataset[dataset['CategoryId'] == 2]
sport = dataset[dataset['CategoryId'] == 3]
entertainment = dataset[dataset['CategoryId'] == 4]
count = [business['CategoryId'].count(), tech['CategoryId'].count(),

politics['CategoryId'].count(), sport['CategoryId'].count(),

entertainment['CategoryId'].count()]
pie = plt.pie(count, labels = ['business', 'tech', 'politics', 'sport',

'entertainment'],
 autopct = "%1.1f%%",
 shadow = True,
 colors = colors,
 startangle = 45,
 explode = (0.05, 0.05, 0.05, 0.05,0.05))

Visualizing Category Related Words
Here we use the word cloud module to show the category-related words.

Word Cloud is a data visualization technique used for representing text data in which the
size of each word indicates its frequency or importance. Significant textual data points
can be highlighted using a word cloud. Word clouds are widely used for analyzing data
from social network websites.

from wordcloud import WordCloud

stop = set(stopwords.words('english'))

business = dataset[dataset['CategoryId'] == 0]

business = business['Text']

tech = dataset[dataset['CategoryId'] == 1]

tech = tech['Text']

politics = dataset[dataset['CategoryId'] == 2]

politics = politics['Text']

sport = dataset[dataset['CategoryId'] == 3]

sport = sport['Text']

entertainment = dataset[dataset['CategoryId'] == 4]

entertainment = entertainment['Text']

def wordcloud_draw(dataset, color = 'white'):

words = ' '.join(dataset)

cleaned_word = ' '.join([word for word in words.split()

if (word != 'news' and word != 'text')])

wordcloud = WordCloud(stopwords = stop,

background_color = color,

width = 2500, height = 2500).generate(cleaned_word)

plt.figure(1, figsize = (10,7))

plt.imshow(wordcloud)

plt.axis("off")

plt.show()

print("business related words:")

wordcloud_draw(business, 'white')

print("tech related words:")

wordcloud_draw(tech, 'white')

print("politics related words:")

wordcloud_draw(politics, 'white')

print("sport related words:")

wordcloud_draw(sport, 'white')

print("entertainment related words:")

wordcloud_draw(entertainment, 'white')

Show Text Column of Dataset
text = dataset["Text"]
text.head(10)

Show Category Column of Dataset
category = dataset['Category']
category.head(10)

Remove All Tags
First, we remove all tags which are present in our given dataset.

def remove_tags(text):
 remove = re.compile(r'')
 return re.sub(remove, '', text)
dataset['Text'] = dataset['Text'].apply(remove_tags)

Remove Special Characters
Here we remove all the special characters.

def special_char(text):
 reviews = ''
 for x in text:

 if x.isalnum():
 reviews = reviews + x
 else:
 reviews = reviews + ' '
 return reviews
dataset['Text'] = dataset['Text'].apply(special_char)

Convert Everything in Lower Case
We convert all articles or text to lower case.

It is one of the simplest and most effective forms of text preprocessing. It is applicable to
most text mining and NLP problems and can help in cases where your dataset is not very
large and significantly helps with the consistency of expected output.

def convert_lower(text):
 return text.lower()
dataset['Text'] = dataset['Text'].apply(convert_lower)
dataset['Text'][1]

Remove all Stopwords
A stop word is a commonly used word (such as “the”, “a”, “an”, “in”) that a search engine
has been programmed to ignore, both when indexing entries for searching and when
retrieving them as the result of a search query.
We would not want these words to take up space in our database, or take up the
valuable processing time. For this, we can remove them easily, by storing a list of words
that you consider to stop words. NLTK(Natural Language Toolkit) in python has a list of
stopwords stored in 16 different languages.

def remove_stopwords(text):
 stop_words = set(stopwords.words('english'))
 words = word_tokenize(text)
 return [x for x in words if x not in stop_words]
dataset['Text'] = dataset['Text'].apply(remove_stopwords)
dataset['Text'][1]

Lemmatizing the Words
Lemmatization is the process of grouping together the different inflected forms of a
word so they can be analyzed as a single item. Lemmatization is similar to stemming but
it brings context to the words. So it links words with similar meanings to one word.
lemmatization is preferred over Stemming because lemmatization does morphological
analysis of the words.

def lemmatize_word(text):
 wordnet = WordNetLemmatizer()
 return " ".join([wordnet.lemmatize(word) for word in text])
dataset['Text'] = dataset['Text'].apply(lemmatize_word)
dataset['Text'][1]

After Cleaning Text our Dataset
dataset

Declared Dependent and Independent Value
x = dataset['Text']
y = dataset['CategoryId']

Create and Fit Bag of Words Model
In this step, we construct a vector, which would tell us whether a word in each sentence
is a frequent word or not. If a word in a sentence is a frequent word, we set it as 1, else
we set it as 0.

Whenever we apply any algorithm in NLP, it works on numbers. We cannot directly feed
our text into that algorithm. Hence, the Bag of Words model is used to preprocess the
text by converting it into a bag of words, which keeps a count of the total occurrences of
the most frequently used words.

from sklearn.feature_extraction.text import CountVectorizer
x = np.array(dataset.iloc[:,0].values)
y = np.array(dataset.CategoryId.values)
cv = CountVectorizer(max_features = 5000)
x = cv.fit_transform(dataset.Text).toarray()
print("X.shape = ",x.shape)
print("y.shape = ",y.shape)

Train Test and Split the Dataset
We need to split a dataset into train and test sets to evaluate how well our machine
learning model performs. The train set is used to fit the model, the statistics of the train
set are known. The second set is called the test data set, this set is solely used for
predictions.

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3,

random_state = 0, shuffle = True)
print(len(x_train))
print(len(x_test))

Create Empty List
#create list of model and accuracy dicts
perform_list = []

Create, Fit and Predict all ML Model
def run_model(model_name, est_c, est_pnlty):

mdl=''

if model_name == 'Logistic Regression':

mdl = LogisticRegression()

elif model_name == 'Random Forest':

mdl = RandomForestClassifier(n_estimators=100 ,criterion='entropy' ,

random_state=0)

elif model_name == 'Multinomial Naive Bayes':

mdl = MultinomialNB(alpha=1.0,fit_prior=True)

elif model_name == 'Support Vector Classifer':

mdl = SVC()

elif model_name == 'Decision Tree Classifier':

mdl = DecisionTreeClassifier()

elif model_name == 'K Nearest Neighbour':

mdl = KNeighborsClassifier(n_neighbors=10 , metric= 'minkowski' , p = 4)

elif model_name == 'Gaussian Naive Bayes':

mdl = GaussianNB()

oneVsRest = OneVsRestClassifier(mdl)

oneVsRest.fit(x_train, y_train)

y_pred = oneVsRest.predict(x_test)

Performance metrics

accuracy = round(accuracy_score(y_test, y_pred) * 100, 2)

Get precision, recall, f1 scores

precision, recall, f1score, support = score(y_test, y_pred, average='micro')

print(f'Test Accuracy Score of Basic {model_name}: % {accuracy}')

print(f'Precision : {precision}')

print(f'Recall : {recall}')

print(f'F1-score : {f1score}')

Add performance parameters to list

perform_list.append(dict([

('Model', model_name),

('Test Accuracy', round(accuracy, 2)),

('Precision', round(precision, 2)),

('Recall', round(recall, 2)),

('F1', round(f1score, 2))

]))

Logistic Regression
run_model('Logistic Regression', est_c=None, est_pnlty=None)

Random Forest
run_model('Random Forest', est_c=None, est_pnlty=None)

Multinomial Naive Bayes
run_model('Multinomial Naive Bayes', est_c=None, est_pnlty=None)

Support Vector Machine
run_model('Support Vector Classifer', est_c=None, est_pnlty=None)

Decision Tree
run_model('Decision Tree Classifier', est_c=None, est_pnlty=None)

KNN
run_model('K Nearest Neighbour', est_c=None, est_pnlty=None)

Gaussian Naive Bayes
run_model('Gaussian Naive Bayes', est_c=None, est_pnlty=None)

Create Dataframe of Model, Accuracy, Precision, Recall, and F1
model_performance = pd.DataFrame(data=perform_list)
model_performance = model_performance[['Model', 'Test Accuracy', 'Precision',

'Recall', 'F1']]
model_performance

Best Model to Perform Accuracy Score
Here, after training and testing the model we find that Random Forest Classifier model
has given the best accuracy from all machine learning models.

model = model_performance["Model"]
max_value = model_performance["Test Accuracy"].max()
print("The best accuracy of model is", max_value,"from Random")

Fit & predict best ML Model
Here we fit and predict our best model i.e. Random Forest.

classifier = RandomForestClassifier(n_estimators=100 ,criterion='entropy' ,

random_state=0).fit(x_train, y_train)
classifier
y_pred = classifier.predict(x_test)

Predict News Article
Now, here, after the completion of model analysis, we can also predict any news articles.

y_pred1 = cv.transform(['Hour ago, I contemplated retirement for a lot of

reasons. I felt like people were not sensitive enough to my injuries. I felt like

a lot of people were backed, why not me? I have done no less. I have won a lot of

games for the team, and I am not feeling backed, said Ashwin'])
yy = classifier.predict(y_pred1)
result = ""
if yy == [0]:
 result = "Business News"

elif yy == [1]:
 result = "Tech News"
elif yy == [2]:
 result = "Politics News"
elif yy == [3]:
 result = "Sports News"
elif yy == [1]:
 result = "Entertainment News"
print(result)

Conclusion
Finally after doing Data cleaning and Data Preprocessing (cleaning data, train_test_split
model, creating a bag of words NLP model, and machine learning model) we got the
accuracy scores and we can say that Random Forest Classification gives the best
accuracy among all machine learning models.

And at last, we also predict the category of different news articles.

===

===

	Know about Data
	Data Cleaning and Data Preprocessing
	Import Libraries
	Import Dataset
	Shape of Dataset
	Check Information of Columns of Dataset
	Count Values of Categories
	Convert Categories Name into Numerical Index
	Show Category’s Name w.r.t Category ID
	Exploratory Data Analysis (EDA)
	Visualizing Data
	Visualizing Category Related Words
	Show Text Column of Dataset
	Show Category Column of Dataset
	Remove All Tags
	Remove Special Characters
	Convert Everything in Lower Case
	Remove all Stopwords
	Lemmatizing the Words
	After Cleaning Text our Dataset
	Declared Dependent and Independent Value
	Create and Fit Bag of Words Model
	Train Test and Split the Dataset
	Create Empty List
	Create, Fit and Predict all ML Model
	Logistic Regression
	Random Forest
	Multinomial Naive Bayes
	Support Vector Machine
	Decision Tree
	KNN
	Gaussian Naive Bayes
	Create Dataframe of Model, Accuracy, Precision, Recall, and F1
	Best Model to Perform Accuracy Score
	Fit & predict best ML Model
	Predict News Article
	Conclusion

