1. Text Classification of News Articles using NLP.
Article Id — Article id unique given to the record
Article — Text of the header and article

Category — Category of the article (tech, business, sport, entertainment, politics)

Consider BBC News as corpus for implementing question 1

Text Classification of News Articles

Know about Data
For the task of news classification with machine learning, | have collected a

dataset from Kaggle, which contains news articles including their headlines and

categories.
Data Fields

e Article Id - Article id unique given to the record
e Article - Text of the header and article

e Category - Category of the article (tech, business, sport, entertainment,

politics)

Data Cleaning and Data Preprocessing

Data preprocessing is the process of transforming raw data into an
understandable format. It is also an important step in data mining as we cannot
work with raw data. The quality of the data should be checked before applying

machine learning or data mining algorithms.

https://docs.google.com/spreadsheets/d/1fvhiqN7b6E3j697F_LzR9YpJmPTrlHPz/edit?usp=sharing&ouid=102571066663734139638&rtpof=true&sd=true

Import Libraries

let’s import the necessary Python libraries and the dataset that we need for this
task.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import re

import nltk

from nltk.corpus import stopwords
nltk.download('stopwords")

from nltk.stem import PorterStemmer

from nltk.stem import WordNetLemmatizer

nltk.download('wordnet')

from nltk.tokenize import word tokenize

from nltk.tokenize import sent_tokenize
nltk.download('punkt")

from wordcloud import WordCloud

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model selection import train_test split

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import make_scorer, roc_curve, roc_auc_score
from sklearn.metrics import precision recall fscore_support as score
from sklearn.metrics.pairwise import cosine_similarity

from sklearn.multiclass import OneVsRestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC, LinearSVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB,MultinomialNB,BernoulliNB

Import Dataset

Import the dataset which we will have to use.

Shape of Dataset

Check the shape (row and column) of the dataset.

dataset.shape

(1490, 3)

Check Information of Columns of Dataset
dataset.info()

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 1498 entries, © to 1489
Data columns (total 3 columns):

Column Non-Null Count Dtype

® ArticleId 149@ non-null 1inte4
1 Text 1498 non-null object
2 Category 1490 non-null object
dtypes: inte4(1), object(2)

memory usage: 35.0+ KB

Count Values of Categories
There are five news categories i.e. Sports, Business, Politics, Entertainment, Tech.

dataset['Category'].value_counts()

sport 346
business 336
politics 274
entertainment 273
tech 261

Name: Category, dtype: inte4

Convert Categories Name into Numerical Index
Convert the given news categories into categorical values.

Associate Category names with numerical index and save it in new column
Categoryld

target_category = dataset['Category'].unique()

print(target_category)

["business’ 'tech' 'politics' 'sport' ‘entertainment’]

dataset['Categoryld'] = dataset['Category'].factorize()[0]

dataset.head()

Text Category CategoryId

ArticleId
0 1833 worldcom ex-boss launches defence lawyers defe... business
1 154 german business confidence slides german busin... business
2 1101 bbc poll indicates economic gloom citizens in ... business
3 1976 lifestyle governs mobile choice faster bett... tech
4 917 enron bosses in $168m payout eighteen former e... business

Show Category’s Name w.r.t Category ID

Here you can show that news category’s name with respect to the following unique

category ID.

Create a new pandas dataframe "category", which only has unique Categories,
also sorting this list in order of CategoryId values

category = dataset[['Category’,

"CategoryId']].drop_duplicates().sort_values('CategoryId")

category
Category CategoryId

0 business 0

3 tech 1

5 politics 2

6 sport 3

7 entertainment -

Exploratory Data Analysis (EDA)

0

0

In data mining, Exploratory Data Analysis (EDA) is an approach to analyzing datasets to
summarize their main characteristics, often with visual methods. EDA is used for seeing

what the data can tell us before the modeling task. It is not easy to look at a column of

numbers or a whole spreadsheet and determine important characteristics of the data. It
may be tedious, boring, and/or overwhelming to derive insights by looking at plain

numbers. Exploratory data analysis techniques have been devised as an aid in this
situation.

Visualizing Data
The below graph shows the news article count for category from our dataset.

dataset.groupby('Category').CategoryId.value_counts().plot(kind = "bar", color =
["pink", "orange", "red", "yellow", "blue"])

plt.xlabel("Category of data")

plt.title("Visulaize numbers of Category of data")

plt.show()

Visulaize numbers of Category of data

350 1

300 -+

250 1

200 1

150

100 -

(business, 0)
(politics, 2)

(sport, 3) 4
(tech, 1)

(entertainment, 4)

Category of data

fig = plt.figure(figsize = (5,5))

colors = ["skyblue"]

business = dataset[dataset['Categoryld’'] == 0]
tech = dataset[dataset['CategoryId'] == 1]

politics = dataset[dataset['Categoryld’'] == 2]
sport = dataset[dataset['Categoryld'] == 3]
entertainment = dataset[dataset['CategoryId'] == 4]
count = [business['CategoryId'].count(), tech['CategoryId'].count(),
politics['CategoryId'].count(), sport['CategoryId'].count(),
entertainment['CategoryId'].count()]
pie = plt.pie(count, labels = ['business', 'tech', 'politics', 'sport’,
'entertainment’'],

autopct = "%1.1F%%",

shadow = True,

colors = colors,

startangle = 45,

explode = (.05, 0.05, 0.05, 0.05,0.05))

business

entertainment

Visualizing Category Related Words
Here we use the word cloud module to show the category-related words.

Word Cloud is a data visualization technique used for representing text data in which the
size of each word indicates its frequency or importance. Significant textual data points
can be highlighted using a word cloud. Word clouds are widely used for analyzing data
from social network websites.

from wordcloud import WordCloud

stop = set(stopwords.words('english'))

business = dataset[dataset['Categoryld’'] == 0]
business = business['Text']

tech

dataset[dataset['Categoryld’'] == 1]

tech

tech['Text"']

politics

dataset[dataset['Categoryld'] == 2]

politics

politics['Text"']

sport = dataset[dataset['Categoryld'] == 3]

sport = sport['Text']

entertainment = dataset[dataset['Categoryld'] == 4]

entertainment

entertainment|['Text"']

def wordcloud draw(dataset, color = 'white'):

words = ' '.join(dataset)

cleaned_word = ' '.join([word for word in words.split()
if (word != 'news' and word != "text')])

wordcloud = WordCloud(stopwords = stop,
background_color = color,

width = 2500, height = 2500).generate(cleaned word)
plt.figure(1, figsize = (10,7))
plt.imshow(wordcloud)

plt.axis("off")

plt.show()

print("business related words:")

wordcloud_draw(business, 'white')

print("tech related words:")
wordcloud_draw(tech, 'white')
print("politics related words:")
wordcloud_draw(politics, 'white')
print("sport related words:")
wordcloud_draw(sport, 'white')
print("entertainment related words:")
wordcloud_draw(entertainment, 'white')
business related words:

=

deal: v ,’f‘“,,.a

1naus

bigge

h Rerman
2 f

- end ’
seen

e

country compani b4
M.nggtpanlgs”cost e M mad

|
s
i money eCoONoOmlcCas

warned@xport

v

government

1ndia

''''' 1a

interest rate" added

tech related words:

mllllon ec h no logyCOmPHuE,&';

g
usin see
G) g , o§
A w
want X . ‘.x-eix Eq)
cmuch T
' () ose progras = f st :

-
f.h w H "'Z;m
=ohed | SO
already ig1ta
bllemo ® like s
R 'TJJL ing o
o work
o: Lineevr many
© S @B ime
= going fi eVl'C“e
uk user WOu make
q) researcn E »C
o0 - -
pPeop L€
gb c*kTu e',~, “; }
onsumer®“* mar wikize website
a nay narket - Could

politics related words:

p a r t ya "]_ th1 made
(1) i ! "

conservatlve

g @ .

campaign
'—‘g- n_

d bbcchildren m | L NALEST g puc
overnment
- peY ¢ Kilfoy silk o ~y debate ¢

sport related words:

M.. 1 a n d madaaddedthree

start C ance

roddlck

QT

b p- ’k €y want
going a week il .O W =W like
02 and o g

re‘ercev vl b t sSay
wx?lsun

ballf| OO B}

ving

-

J

r old d front
YER 1 ClUbsmce]_ff‘(e S1X nations o e

sEinespl ayver:
take'lireland<chelsea..

return k“OW

19(1510n

difficulr

sthilete

entertainment related words:

time mu51C

ecord act
\ (Sd . r bbe

"last

ay
many mus x(al tvyo

producer —h

oo -1 EY\I set Iﬁ s
— B
c —“Mpeople a C
oY &3] @
m g vm",;‘ b
made ™ prize =" \
‘ifié’su i lchart
- staive g comedy
mar Ceremon) —_: : O n e
L geod 9
best pwisale Ariragh o= ancethree™t M
| : - O < :
= g— i s %
like 4 :london E 2 o WS
S Nor k O
BACh I"‘ C— pr m g .l‘at‘er.
book Q" = & : = role E
o _ single b o live -
S - e, -3
v five T winner ; , 1N lucjl"ngw
Q y minate Lstwera drake 7
Qget Dest Lim
5 e top
career™ festival released drama ‘ ksecond release world

Show Text Column of Dataset
text = dataset["Text"]
text.head(10)

LT TR B T O o B =N W [A T Y

MName:

worldcom ex-boss launches defence lawyers defe...
german business confidence slides german busin...

bbc poll indicates economic gloom citizens in

lifestyle governs mobile choice faster bett...
enron bosses in $168m payout eighteen former e...
howard truanted to play snooker conservative...

wales silent on grand slam talk rhys williams

french honour for director parker british film...
car giant hit by mercedes slump a slump in pro...
fockers fuel festive film chart comedy meet th...

Text, dtype: object

Show Category Column of Dataset
category = dataset['Category']
category.head(10)

CO =~ O N =@

9
Name

business
business
business
tech
business
politics
sport
entertainment
business
entertainment
: Category, dtype: object

Remove All Tags
First, we remove all tags which are present in our given dataset.

def remove tags(text):

remove =
return re

re.compile(r'")
.sub(remove, '', text)

dataset['Text'] = dataset['Text'].apply(remove tags)

Remove Special Characters
Here we remove all the special characters.

def special

_char(text):

reviews = "'
for x in text:

if x.isalnum():
reviews = reviews + x
else:
reviews = reviews +
return reviews
dataset['Text'] = dataset['Text'].apply(special_char)

Convert Everything in Lower Case
We convert all articles or text to lower case.

It is one of the simplest and most effective forms of text preprocessing. It is applicable to
most text mining and NLP problems and can help in cases where your dataset is not very
large and significantly helps with the consistency of expected output.

def convert_lower(text):

return text.lower()
dataset['Text'] = dataset['Text'].apply(convert_ lower)
dataset['Text'][1]

Remove all Stopwords

A stop word is a commonly used word (such as “the”, “a”, “an”, “in”) that a search engine
has been programmed to ignore, both when indexing entries for searching and when
retrieving them as the result of a search query.

We would not want these words to take up space in our database, or take up the
valuable processing time. For this, we can remove them easily, by storing a list of words
that you consider to stop words. NLTK(Natural Language Toolkit) in python has a list of
stopwords stored in 16 different languages.

def remove_ stopwords(text):

stop_words = set(stopwords.words('english'))

words = word_tokenize(text)

return [x for x in words if x not in stop_words]
dataset['Text'] = dataset['Text'].apply(remove_stopwords)
dataset['Text'][1]

Lemmatizing the Words

Lemmatization is the process of grouping together the different inflected forms of a
word so they can be analyzed as a single item. Lemmatization is similar to stemming but
it brings context to the words. So it links words with similar meanings to one word.
lemmatization is preferred over Stemming because lemmatization does morphological
analysis of the words.

def lemmatize_word(text):

wordnet = WordNetLemmatizer()

return " ".join([wordnet.lemmatize(word) for word in text])
dataset['Text'] = dataset['Text'].apply(lemmatize word)
dataset['Text'][1]

After Cleaning Text our Dataset

dataset

Article1d Text Category CategoryId

0 1833 waorldcom ex bos launch defence lawyer defendin... business 0
1 154 german business confidence slide german busine... business 0
2 1101 bbc poll indicates economic gloom citizen majo... business 0
3 1976 lifestyle governs mobile choice faster better ... tech 1
4 917 enron boss 168m payout eighteen former enron d... business 0
1485 857 double eviction big brother model caprice holb... entertainment 4
1486 325 dj double act revamp chart show dj duo jk joel... entertainment 4
1487 1590 weak dollar hit reuters revenue medium group ... business 0
1488 1587 apple ipod family expands market apple expande... tech 1
1489 538 santy worm make unwelcome visit thousand websi... tech 1

1490 rows % 4 columns

Declared Dependent and Independent Value
x = dataset['Text']
y = dataset['Categoryld']

Create and Fit Bag of Words Model

In this step, we construct a vector, which would tell us whether a word in each sentence
is a frequent word or not. If a word in a sentence is a frequent word, we set it as 1, else
we set it as 0.

Whenever we apply any algorithm in NLP, it works on numbers. We cannot directly feed
our text into that algorithm. Hence, the Bag of Words model is used to preprocess the
text by converting it into a bag of words, which keeps a count of the total occurrences of
the most frequently used words.

from sklearn.feature_extraction.text import CountVectorizer
X = np.array(dataset.iloc[:,0].values)

y = np.array(dataset.CategoryId.values)

cv = CountVectorizer(max_features = 5000)

x = cv.fit_transform(dataset.Text).toarray()

print("X.shape = ",x.shape)

print("y.shape ",y.shape)

Test Accuracy Score of Basic Logistic Regression: % 97.09
Precision : ©.978917225950783

Recall » B.978917225950783

Fl-score 1 B.9789172259587831

X.shape
y.shape

(1490, 5000)
(1490,)

Train Test and Split the Dataset

We need to split a dataset into train and test sets to evaluate how well our machine
learning model performs. The train set is used to fit the model, the statistics of the train
set are known. The second set is called the test data set, this set is solely used for
predictions.

from sklearn.model selection import train_test split

x_train, x_test, y _train, y_test = train_test_split(x, y, test_size = 0.3,
random_state = @, shuffle = True)

print(len(x_train))

print(len(x_test))

1843
447

Create Empty List
#icreate list of model and accuracy dicts
perform_list = []

Create, Fit and Predict all ML Model
def run_model(model name, est c, est pnlty):

mdl=""

if model_name == 'Logistic Regression':
mdl = LogisticRegression()

elif model _name == 'Random Forest':

mdl = RandomForestClassifier(n_estimators=100 ,criterion="'entropy' ,
random_state=0)

elif model _name == 'Multinomial Naive Bayes':

mdl = MultinomialNB(alpha=1.0,fit prior=True)

elif model_name == 'Support Vector Classifer':
mdl = SVC()
elif model _name == 'Decision Tree Classifier':

mdl = DecisionTreeClassifier()

elif model name == 'K Nearest Neighbour':

mdl = KNeighborsClassifier(n_neighbors=10 , metric= 'minkowski' , p = 4)
elif model name == 'Gaussian Naive Bayes':

mdl = GaussianNB()

oneVsRest = OneVsRestClassifier(mdl)

oneVsRest.fit(x_train, y train)

y_pred = oneVsRest.predict(x_test)

Performance metrics

accuracy = round(accuracy_score(y_test, y pred) * 100, 2)

Get precision, recall, fl scores

precision, recall, flscore, support = score(y_test, y pred, average='micro')
print(f'Test Accuracy Score of Basic {model name}: % {accuracy}')
print(f'Precision : {precision}')

print(f'Recall : {recall}"')

print(f'Fl-score : {flscore}')

Add performance parameters to list

perform_list.append(dict([

('Model', model_name),

('Test Accuracy', round(accuracy, 2)),
('Precision', round(precision, 2)),
('Recall', round(recall, 2)),

('F1', round(flscore, 2))

M

Logistic Regression
run_model('Logistic Regression', est_c=None, est_pnlty=None)

Test Accuracy Score of Basic Logistic Regression: % 97.09
Precision : ©.970917225950783

Recall » B.978917225950783

Fl-score 1 B.9789172259587831

Random Forest
run_model('Random Forest', est _c=None, est pnlty=None)

Test Accuracy Score of Basic Random Forest: % 97.99
Precision : ©.9798657718120806

Recall » B.9798657718120886

Fl-score : B.9796657718120806

Multinomial Naive Bayes
run_model('Multinomial Naive Bayes', est c=None, est pnlty=None)

Test Accuracy Score of Basic Multinomial Naive Bayes: % 97.09
Precision : ©.970917225950783

Recall P B.97B9172259587833

Fl-score 1 B8.9789172259587831

Support Vector Machine
run_model('Support Vector Classifer', est c=None, est pnlty=None)

Test Accuracy Score of Basic Support Vector Classifer: % 96.64
Precision : ©.96644295302081343

Recall 1 ©.9664429530201345

Fl-score 1 0.9664429530201343

Decision Tree
run_model('Decision Tree Classifier', est c=None, est_pnlty=None)

Test Accuracy Score of Basic Decision Tree Classifier: % 83.22
Precision : ©.8322147651006712

Recall » B.8322147651886712

Fl-score 1 B.8322147651086712

KNN
run_model ('K Nearest Neighbour', est_c=None, est_pnlty=None)

Test Accuracy Score of Basic K Nearest Neighbour: % 73.6
Precision : ©.7360178970917226

Recall : ©.7360178976917226

Fl-score T B.7360178970917226

Gaussian Naive Bayes
run_model('Gaussian Naive Bayes', est_c=None, est_pnlty=None)

Test Accuracy Score of Basic Gaussian Nalve Bayes: % 76.06
Precision : ©.76062639821082909

Recall : ©.7606263982162969

Fl-score 1 B.7666263982192909

Create Dataframe of Model, Accuracy, Precision, Recall, and F1

model_performance = pd.DataFrame(data=perform_list)

model performance = model_performance[['Model', 'Test Accuracy', 'Precision’,
‘Recall’, "F1']]

model performance

Model Test Accuracy Precision Recall F1

0 Logistic Regression 97.09 0.97 0.97 0.97
1 Random Forest 97.99 0.98 0.98 0.98
2 Multinomial Naive Bayes 97.09 0.97 0.97 0.97
3 Support Vector Classifer 96.64 0.97 0.97 0.97
4 Decision Tree Classifier 83.22 0.83 0.83 0.83
5 K Nearest Neighbour 73.60 0.74 0.74 0.74
6 Gaussian Naive Bayes 76.06 0.76 0.76 0.76

Best Model to Perform Accuracy Score
Here, after training and testing the model we find that Random Forest Classifier model
has given the best accuracy from all machine learning models.

model = model_performance["Model"]
max_value = model performance["Test Accuracy"].max()
print("The best accuracy of model is", max_value,"from Random")

The best accuracy of model is 97.99 from Random

Fit & predict best ML Model
Here we fit and predict our best model i.e. Random Forest.

classifier = RandomForestClassifier(n_estimators=100 ,criterion="entropy' ,
random_state=0).fit(x_train, y train)

classifier

y_pred = classifier.predict(x_test)

Predict News Article
Now, here, after the completion of model analysis, we can also predict any news articles.

y_predl = cv.transform(['Hour ago, I contemplated retirement for a lot of
reasons. I felt like people were not sensitive enough to my injuries. I felt like
a lot of people were backed, why not me? I have done no less. I have won a lot of
games for the team, and I am not feeling backed, said Ashwin'])
yy = classifier.predict(y_predl)
result = ""
if yy == [0]:

result = "Business News"

elif yy == [1]:

result = "Tech News"
elif yy == [2]:
result = "Politics News"
elif yy == [3]:
result = "Sports News"
elif yy == [1]:
result = "Entertainment News"
print(result)

Sports News

Conclusion

Finally after doing Data cleaning and Data Preprocessing (cleaning data, train_test_split
model, creating a bag of words NLP model, and machine learning model) we got the
accuracy scores and we can say that Random Forest Classification gives the best
accuracy among all machine learning models.

And at last, we also predict the category of different news articles.

	Know about Data
	Data Cleaning and Data Preprocessing
	Import Libraries
	Import Dataset
	Shape of Dataset
	Check Information of Columns of Dataset
	Count Values of Categories
	Convert Categories Name into Numerical Index
	Show Category’s Name w.r.t Category ID
	Exploratory Data Analysis (EDA)
	Visualizing Data
	Visualizing Category Related Words
	Show Text Column of Dataset
	Show Category Column of Dataset
	Remove All Tags
	Remove Special Characters
	Convert Everything in Lower Case
	Remove all Stopwords
	Lemmatizing the Words
	After Cleaning Text our Dataset
	Declared Dependent and Independent Value
	Create and Fit Bag of Words Model
	Train Test and Split the Dataset
	Create Empty List
	Create, Fit and Predict all ML Model
	Logistic Regression
	Random Forest
	Multinomial Naive Bayes
	Support Vector Machine
	Decision Tree
	KNN
	Gaussian Naive Bayes
	Create Dataframe of Model, Accuracy, Precision, Recall, and F1
	Best Model to Perform Accuracy Score
	Fit & predict best ML Model
	Predict News Article
	Conclusion

