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ANN MODEL using linear regression, classifiers

#importing the Libraries

import pandas as pd

import numpy as np

# import Libraries for data visualization

import matplotlib.pyplot as plt

import seaborn as sns

from statsmodels.graphics.gofplots import ProbPlot

# import Libraries for building Linear regression model
from statsmodels.formula.api import ols

import statsmodels.api as sm

from sklearn.linear_model import LinearRegression

# import Library for preparing data
from sklearn.model selection import train_test_split

# import Library for data preprocessing
from sklearn.preprocessing import MinMaxScaler

import warnings
warnings.filterwarnings("ignore")

imported libraries which are required
data = pd.read_csv('BostonHousing.csv')

data
crim zn 1indus chas nox rm  age
0 0.00632 18.0 2.31 ©@ 0.538 6.575 65.2 4
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4
2 0.02729 0.0 7.07 ©@ 0.469 7.185 61.1 4
3 0.03237 0.0 2.18 © 0.458 6.998 45.8 6
4 0.06905 0.0 2.18 @ 0.458 7.147 54.2 6
501 ©0.06263 0.0 11.93 ®@ 0.573 6.593 69.1 2
502 ©0.04527 0.0 11.93 ©@ 0.573 6.120 76.7 2
503 ©0.06076 0.0 11.93 ®@ ©0.573 6.976 91.0 2
504 ©.10959 0.0 11.93 ©@ 0.573 6.794 89.3 2
505 ©0.04741 0.0 11.93 © 0.573 6.030 80.8 2
ptratio b 1stat medv

15.3 396.90 4.98 24.0
17.8 396.99 9.14 21.6
17.8 392.83 4.03 34.7
18.7 394.63 2.94 33.4
18.7 396.99 5.33 36.2
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501 21.0 391.99 9.67 22.4

502 21.0 396.99 9.08 20.6
503 21.0 396.99 5.64 23.9
504 21.0 393.45 6.48 22.0
505 21.0 396.9 7.88 11.9

[506 rows x 14 columns]
b:

-Bostenhousing consisting of the features crim zn indus chas nox rm age dis rad tax ptratio
b Istat medv means -CRIM: per capita crime rate by town // -ZN: proportion of residential
land zoned for lots over 25,000 sq.ft.// -INDUS: proportion of non-retail business acres per
town// -CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)// -
NOX: nitric oxides concentration (parts per 10 million)// -RM: average number of rooms
per dwelling// -AGE: proportion of owner-occupied units built prior to 1940// -DIS:
weighted distances to five Boston employment centres// -RAD: index of accessibility to
radial highways// -TAX: full-value property-tax rate per 10,000 dollars// -PTRATIO: pupil-
teacher ratio by town// -B1000: (Bk - 0.63)”"2 where Bk is the proportion of blacks by
town// -LSTAT: %lower status of the population// -MEDV: Median value of owner-
occupied homes in 1000 dollars.//

above data havinng the 506 rows and16 columns

print (data.dtypes)

crim float64
zn float64
indus float64
chas inte4
nox float64
rm float64
age float64d
dis float64
rad int64
tax int64
ptratio float6e4d
b float64
Istat float64
medv float64

dtype: object
above information tells about the features of datatypes integers or float,text
print(data.describe())

crim zZn indus chas nox rm
\
count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634



std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617
min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000
25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500
50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500
75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500
max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000

age dis rad tax ptratio b
\

count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000

mean 68.574901 3.795043 9.549407 408.237154  18.455534 356.674032
std 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864
min 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000
25% 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500
50% 77 .500000 3.207450 5.000000 330.000000 19.050000 391.440000
75% 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000
max 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000
Istat medv

count 506.000000 506.000000
mean 12.653063 22.532806

std 7.141062 9.197104
min 1.730000 5.000000
25% 6.950000 17.025000
50% 11.360000  21.200000
75% 16.955000  25.000000
max 37.970000 50.000000

features have different statistical values to understand the distrubution of features
describe function used here

Observations:_____

e Crime rates average is 3.6 with very low crime rates in 50% of towns and extreme
high rates in other towns.

e Atleast 50% of Boston towns have no zoned lands for large lot.

e The mean of CHAS is 0.07, which means that most of the houses are not on riverside.
data.isnull().sum()
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b
Istat
medv
dtype

0
0
0
: inte4

indicates null functions are not there ,all features having the values

from sklearn.model selection import train_test split
from sklearn.preprocessing import StandardScaler
from tensorflow import keras

from tensorflow.keras import layers

imported the required libraries for regression model

splitting data in to train and test
target=data[ ‘'medv']

X_train, X test, y_train, y test = train_test split(data, target,
test_size=0.25, random_state=42)

# Standardize the features
scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

# Build the Regression ANN model

model

layers.Input(shape=(X_train.shape[1],)),
layers.Dense(64, activation='relu'),
layers.Dense(32, activation='relu'),

= keras.Sequential([

layers.Dense(1l) # Output Layer with one neuron (Regression)

D

# Compile the model
model.compile(optimizer="adam', loss='mean_squared_error")

# Train the model
fit(X_train, y train, epochs=100, batch_size=32, verbose=1)

model
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31/100
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.7173

.6302

.5610

.4942

.4269

.3557

.2968
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12/12 [==============================] - 0s 3ms/step - loss:
Epoch 82/100

12/12 [==============================] - 0@s 3ms/step - loss:
Epoch 83/100

12/12 [==============================] - 0@s 3ms/step - loss:
Epoch 84/100

12/12 [==============================] - 0s 4ms/step - loss:
Epoch 85/100

12/12 [==============================] - 0@s 3ms/step - loss:
Epoch 86/100

12/12 [==============================] - 0s 4ms/step - loss:
Epoch 87/100

12/12 [==============================] - 0s 3ms/step - loss:
Epoch 88/100

12/12 [==============================] - 0s 3ms/step - loss:
Epoch 89/100

12/12 [==============================] - 0s 3ms/step - loss:
Epoch 90/100

12/12 [==============================] - 0s 3ms/step - loss:
Epoch 91/100

12/12 [==============================] - 0s 3ms/step - loss:
Epoch 92/100

12/12 [==============================] - 0s 3ms/step - loss:
Epoch 93/100

12/12 [==============================] - Qs 3ms/step - loss:
Epoch 94/100

12/12 [==============================] - @s 3ms/step - loss:
Epoch 95/100

12/12 [==============================] - Qs 3ms/step - loss:
Epoch 96/100

12/12 [==============================] - 0Os 4ms/step - loss:
Epoch 97/100

12/12 [==============================] - 0@s 3ms/step - loss:
Epoch 98/100

12/12 [==============================] - 0@s 3ms/step - loss:
Epoch 99/100

12/12 [==============================] - 0Os 3ms/step - loss:
Epoch 100/100

12/12 [==============================] - 0Os 3ms/step - loss:
<keras.src.callbacks.History at ©x25151f451860>

loss = model.evaluate(X_test, y test)

print(f"Mean Squared Error on Test Data: {loss:.2f}")

4/4 [==============================] - @S 3ms/step - loss: 2.

Mean Squared Error on Test Data: 2.49
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1.9149
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1.7386

1.7069

1.6780

1.6773

1.6294

4941



A Mean Squared Error (MSE) of 2.49 on the test data indicates how well regression model is
performing. In this context, MSE measures the average squared difference between the actual

house prices and the predicted house prices.

model2 = keras.Sequential([
keras.layers.Input(shape=(X_train.shape[1],)),
keras.layers.Dense(64, activation='tanh'"),
keras.layers.Dense(32, activation='tanh'"),
keras.layers.Dense(1) # Output Layer with one neuron (Regression)

D)

# Change the activation function and continue using the same model

#we are etting the same value Llossfunction with out changing for numberof
epochs

# Early Stopping this 1s adopted for no changing value happend in below
models selected

from tensorflow import keras

from tensorflow.keras.callbacks import EarlyStopping

# 3. Model Compilation
model2.compile(loss="mean_squared_error', optimizer='adam")

early_stopping = EarlyStopping(monitor='val loss', patience=5,
restore_best_weights=True)

# 4. Model Training
model2.fit(X_train, y train, epochs=100, batch_size=32)

Epoch 1/100

12/12 [==============================] - 1s 4ms/step - loss: 22.3308
Epoch 2/100
12/12 [==============================] - 0s 4ms/step - loss: 21.2961
Epoch 3/100
12/12 [==============================] - Os 4ms/step - loss: 20.2721
Epoch 4/100
12/12 [==============================] - @s 4ms/step - loss: 19.4070
Epoch 5/100
12/12 [==============================] - 0s 4ms/step - loss: 18.4641
Epoch 6/100
12/12 [==============================] - 0s 4ms/step - loss: 17.6443
Epoch 7/100
12/12 [==============================] - 0s 4ms/step - loss: 16.8420
Epoch 8/100
12/12 [==============================] - @s 4ms/step - loss: 16.1105
Epoch 9/100
12/12 [==============================] - 0s 7ms/step - loss: 15.3726
Epoch 10/100
12/12 [==============================] - 0s 4ms/step - loss: 14.7286
Epoch 11/100
12/12 [==============================] - 0s 4ms/step - loss: 14.0730

Epoch 12/100
12/12 [==============================] - es 4ms/step - loss: 13.4599
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Epoch 88/100

12/12 [==============================] - @S 6ms/step - loss: 0.5744
Epoch 89/1600

12/12 [==============================] - @S 5ms/step - loss: 0.5750
Epoch 90/100

12/12 [==============================] - 0s 4ms/step - loss: 0.5401
Epoch 91/100

12/12 [==============================] - 0s 4ms/step - loss: 0.4999
Epoch 92/100

12/12 [==============================] - @S 6ms/step - loss: 0.4837
Epoch 93/100

12/12 [==============================] - 0s 4ms/step - loss: 0.4590
Epoch 94/100

12/12 [==============================] - 0s 5ms/step - loss: 0.4343
Epoch 95/100

12/12 [==============================] - 0s 4ms/step - loss: 0.4204
Epoch 96/100

12/12 [==============================] - 0s 3ms/step - loss: 0.4015
Epoch 97/100

12/12 [==============================] - 0s 3ms/step - loss: 0.3949
Epoch 98/100

12/12 [==============================] - 0@s 3ms/step - loss: 0.3718
Epoch 99/100

12/12 [==============z=====z===========] - 0s 4ms/step - loss: 0.3494
Epoch 100/100

12/12 [==============z=====z===========] - 0s 4ms/step - loss: 0.3428

<keras.src.callbacks.History at ©x25157582350>

# Evaluate the model on the test set
loss = model2.evaluate(X_test, y test)
print(f"Mean Squared Error on Test Data: {loss:.2f}")

4/4 [==============================] - es 4ms/step - 1055: 9.5167
Mean Squared Error on Test Data: 0.52

#Mean Squared Error on Test Data: 6.52 means it 1s the good model for the
testing the values
from tensorflow import keras

X_unseen =
np.array([[©.4,4,245.65,0.5,581,5.856,97,94.44,2,188,370.31,250.41,130.3,34]]

)

# Make predictions on the preprocessed unseen data
predictions = model2.predict(X_unseen)

1/1 [==============================] - 95 154ms/step

y_unseen=[29.9]



from sklearn.metrics import mean_squared_error
# Step 4: Evaluate Model Performance

mse = mean_squared_error(y_unseen, predictions)
print(f"Mean Squared Error (MSE): {mse}")

Mean Squared Error (MSE): 93.20022598220396

# Step 5: Visualize or Analyze Results (Optional)
plt.scatter(y_unseen, predictions)
plt.xlabel("Actual Values")

plt.ylabel("Predicted Values")

plt.title("Actual vs. Predicted Values")
plt.show()

Actual vs. Predicted Values
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T T T T T T
28.5 29.0 29.5 30.0 30.5 31.0 31.5
Actual Values

#above figure information is showing that there is near relation between the
predicted and actual value

Classification (Categorizing House Prices)

from sklearn.model selection import train_test split

from sklearn.preprocessing import LabelEncoder

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report



# Define price range categories based on thresholds

price_bins = [0, 20, 30, 40, 50, np.inf]

price_labels = ["Very Low", "Low", "Medium", "High", "Very High"]

data[ 'Price Range'] = pd.cut(target, bins=price_bins, labels=price_labels)

# Encode the price range labels to numeric values
label encoder = LabelEncoder()
data[ 'Price Range'] = label_encoder.fit_transform(data[ 'Price Range'])

# Split the data into training and testing sets
X_train, X_test, y _train, y test = train_test_split(data.drop('Price Range',
axis=1), data['Price Range'], test_size=0.2, random_state=42)

# Initialize classifiers

logistic_classifier = LogisticRegression()

tree_classifier = DecisionTreeClassifier()

rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)

# Train classifiers
logistic_classifier.fit(X_train, y_train)
tree_classifier.fit(X_train, y_train)
rf_classifier.fit(X_train, y_train)

RandomForestClassifier(random_state=42)

# Make predictions

logistic_preds = logistic_classifier.predict(X_ test)
tree_preds = tree_classifier.predict(X_test)
rf_preds = rf_classifier.predict(X_test)

# Evaluate classifiers

print("Logistic Regression Accuracy:", accuracy_score(y_test,
logistic_preds))

print("Decision Tree Classifier Accuracy:", accuracy_score(y_test,
tree_preds))

print("Random Forest Classifier Accuracy:", accuracy_score(y_test, rf_preds))

Logistic Regression Accuracy: 0.8823529411764706
Decision Tree Classifier Accuracy: 1.0
Random Forest Classifier Accuracy: 1.0

# Create a Linear Regression model
model2 = LinearRegression()

# Train the model on the training data
model2.fit(X_train, y train)

LinearRegression()

# Make predictions on the test set
predictions = model2.predict(X_test)



# Evaluate the model using a suitable metric (e.g., Mean Squared Error)
mse = mean_squared_error(y_test, predictions)
print(f"Mean Squared Error: {mse}")

Mean Squared Error: 0.4866917066973078

predicting for unseen data

unseen_data =
np.array([[0.14455,12.5,7.87,0,0.524,65.172,6790.1,5.9505,5,31,15.2,9.9,17.1,
3]11) # Replace with the feature values for the unseen house
scaled_unseen_data = scaler.transform(unseen_data) # If you used feature
scaling during training

predicted_price = model2.predict(scaled_unseen_data)

print(f"Predicted House Price: {predicted_price}")

Predicted House Price: [10.36723235]

above parameter are showing the for the expected values

unseen_data2 =
np.array([[©.15038,0,25.65,0,0.581,54.856,97,1.9444,2,188,19.1,370.31,17.3,34
11) # Replace with the feature values for the unseen house
scaled_unseen_data = scaler.transform(unseen_data2) # If you used feature
scaling during training

predicted_price = model2.predict(scaled_unseen_data)

print(f"Predicted House Price: {predicted_price}")

Predicted House Price: [7.47723173]
RNN MODEL

FAKE NEWS DETECTION

#IMPORTIN REQUIRED LIBRERIES

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model selection import train_test_split
from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report
import re

import string

#Read the data using pandas
datafake=pd.read _csv("fake.csv")

datafake

title \
%] Donald Trump Sends Out Embarrassing New Year’...
1 Drunk Bragging Trump Staffer Started Russian ...

2 Sheriff David Clarke Becomes An Internet Joke...



23476
23477
23478
23479
23480

PrwWNRERO

23476
23477
23478
23479
23480

PWNERERO

23476
23477
23478
23479
23480

[23481
datafak

title
text
subject
date
dtype:

datafak

(23481,

datafak

Trump Is So Obsessed He Even Has Obama’s Name...
Pope Francis Just Called Out Donald Trump Dur...

McPain: John McCain Furious That Iran Treated ...
JUSTICE? Yahoo Settles E-mail Privacy Class-ac...
Sunnistan: US and Allied ‘Safe Zone’ Plan to T...
How to Blow $700 Million: Al Jazeera America F...
10 U.S. Navy Sailors Held by Iranian Military ...

text
Donald Trump just couldn t wish all Americans
House Intelligence Committee Chairman Devin Nu...
On Friday, it was revealed that former Milwauk...
On Christmas day, Donald Trump announced that .
Pope Francis used his annual Christmas Day mes...

21st Century Wire says As 21WIRE reported earl...
21st Century Wire says It s a familiar theme.

Patrick Henningsen 21st Century WireRemember ...
21st Century Wire says Al Jazeera America will...
21st Century Wire says As 21WIRE predicted in ...

date
December 31, 2017
December 31, 2017
December 30, 2017
December 29, 2017
December 25, 2017

January 16, 2016
January 16, 2016
January 15, 2016
January 14, 2016
January 12, 2016

rows X 4 columns]

e.isnull().sum()

e.shape

4)

e['class']=0

subject
News
News
News
News
News

Middle-east
Middle-east
Middle-east
Middle-east
Middle-east



datafake.shape

(23481, 5)

datafake.head()

PrwWNRO PrwWNRERO

PWNERERO

title
Donald Trump Sends Out Embarrassing New Year’...
Drunk Bragging Trump Staffer Started Russian ...
Sheriff David Clarke Becomes An Internet Joke...
Trump Is So Obsessed He Even Has Obama’s Name...
Pope Francis Just Called Out Donald Trump Dur...

text subject \

Donald Trump just couldn t wish all Americans ...
House Intelligence Committee Chairman Devin Nu...
On Friday, it was revealed that former Milwauk...
On Christmas day, Donald Trump announced that ...
Pope Francis used his annual Christmas Day mes...

date class
December 31, 2017 0
December 31, 2017 0
December 30, 2017 0
December 29, 2017 0
December 25, 2017 0

datatrue=pd.read_csv('True.csv')

datatrue['class']=1

datatrue.head()

PWNERERO PWNERERO

[l )

title
As U.S. budget fight looms, Republicans flip t...
U.S. military to accept transgender recruits o...
Senior U.S. Republican senator: 'Let Mr. Muell...
FBI Russia probe helped by Australian diplomat...
Trump wants Postal Service to charge 'much mor...

text
WASHINGTON (Reuters) - The head of a conservat...
WASHINGTON (Reuters) - Transgender people will...
WASHINGTON (Reuters) - The special counsel inv...
WASHINGTON (Reuters) - Trump campaign adviser ...
SEATTLE/WASHINGTON (Reuters) - President Donal...

date class
December 31, 2017 1
December 29, 2017 1
December 31, 2017 1

News
News
News
News
News

\

subject
politicsNews
politicsNews
politicsNews
politicsNews
politicsNews



3 December 30, 2017 1
4 December 29, 2017 1

datatrue.shape

(21417, 5)

datatrue.shape,datafake.shape

((21417, 5), (23481, 5))

fakenewsdetection=pd.concat([datatrue,datafake], ignore_index=True,
sort=False)
df=fakenewsdetection

df.head()

title \
© As U.S. budget fight looms, Republicans flip t...
1 U.S. military to accept transgender recruits o...
2 Senior U.S. Republican senator: 'Let Mr. Muell...
3 FBI Russia probe helped by Australian diplomat...
4 Trump wants Postal Service to charge 'much mor...

text subject \
© WASHINGTON (Reuters) - The head of a conservat... politicsNews
1 WASHINGTON (Reuters) - Transgender people will... politicsNews
2 WASHINGTON (Reuters) - The special counsel inv... politicsNews
3 WASHINGTON (Reuters) - Trump campaign adviser ... politicsNews
4 SEATTLE/WASHINGTON (Reuters) - President Donal... politicsNews

date class
© December 31, 2017 1
1 December 29, 2017 1
2 December 31, 2017 1
3 December 30, 2017 1
4 December 29, 2017 1
df.tail(5)
title \
44893 McPain: John McCain Furious That Iran Treated ...
44894 JUSTICE? Yahoo Settles E-mail Privacy Class-ac...
44895 Sunnistan: US and Allied ‘Safe Zone’ Plan to T...
44896 How to Blow $700 Million: Al Jazeera America F...
44897 10 U.S. Navy Sailors Held by Iranian Military ...
text subject \

44893 21st Century Wire says As 21WIRE reported earl... Middle-east
44894 21st Century Wire says It s a familiar theme. Middle-east
44895 Patrick Henningsen 21st Century WireRemember ... Middle-east



44896
44897

44893
44894
44895
44896
44897

21st Century Wire says Al Jazeera America will...
21st Century Wire says As 21WIRE predicted in ...

date class
January 16, 2016
January 16, 2016
January 15, 2016
January 14, 2016
January 12, 2016

(ORI RN

df = df.sample(frac = 1)

df

37362
25588
2120

20361
38011
42282
17137
6275

43735
30409

37362
25588
2120

20361
38011
42282
17137
6275

43735
30409

37362
25588
2120

20361
38011
42282
17137

title
10-Year 01d Writes to Trump Asking to Mow The ...
Trump’s #1 Deplorable Has A Question For You ...
Factbox: Trump on Twitter (Aug 17) - Stonewall...
Japan PM Abe's ratings regain 50 percent amid ...
BREAKING! INVESTIGATION: Hillary Clinton Did N...

HARVARD BULLIED INTO Dropping 80 Year 0ld “Rac...
Greek police cut down to size: EU court rules ...
Senate Democrats ask Trump attorney general pi...
Obama Joins Comedy Central Host to Push €Laugh...
Oregon Right-Wing Terrorist Makes CHILLING Co...

text
The National Park Service might be out of a jo...
Jim Stachowiak is a staunch Trump supporter wh...
The following statements were posted to the ve...
TOKYO (Reuters) - Japanese Prime Minister Shin...
Was Hillary Clinton negligent or was she doin...

Harvard is agreeing to erase the history of th...
LUXEMBOURG (Reuters) - European police forces ...
WASHINGTON (Reuters) - Nine Democratic senator...
21st Century Wire says President Obama is once...
If anyone questions whether or not the Bundy-1...

date «class

Sep 15, 2017 0
October 16, 2016 0
August 17, 2017 1
September 12, 2017 1
May 25, 2016 7]

Mar 16, 2016 %]
October 18, 2017 1

Middle-east
Middle-east

\

subject
Government News
News
politicsNews
worldnews
Government News

left-news
worldnews
politicsNews
US_News

News



6275
43735
30409

January 17, 2017
December 15, 2016
January 3, 2016

[44898 rows x 5 columns]

df.head()

37362
25588
2120

20361
38011

37362
25588
2120

20361
38011

37362
25588
2120

20361
38011

dfl=df.drop([ 'title', 'subject', 'date'],axis=1)

[“IN]

title

10-Year 01d Writes to Trump Asking to Mow The ...
Trump’s #1 Deplorable Has A Question For You ...
Factbox: Trump on Twitter (Aug 17) - Stonewall...
Japan PM Abe's ratings regain 50 percent amid ...
BREAKING! INVESTIGATION: Hillary Clinton Did N...

text

The National Park Service might be out of a jo..

Jim Stachowiak is a staunch Trump supporter wh...
The following statements were posted to the ve...
TOKYO (Reuters) - Japanese Prime Minister Shin...
Was Hillary Clinton negligent or was she doin...

date
Sep 15, 2017

October 16, 2016
August 17, 2017

September 12, 2017

May 25, 2016

dfl.reset_index(inplace = True)
dfl.drop(["index"], axis = 1, inplace

dfl.head()

text

The National Park Service might be out of a jo...
Jim Stachowiak is a staunch Trump supporter wh...

TOKYO (Reuters) - Japanese Prime Minister Shin...

0
1
2 The following statements were posted to the ve...
3
4

Was Hillary Clinton negligent or was she doin...

Creating a function to process the texts
def wordopt(text):

text =
text =
text =
text =

text

text.lower()

re
re
re
re

ssub("\[.*2\]",

"', text)

Lsub("\\W"," ", text)
.sub('https?://\S+|www\.\S+", "', text)

.sub('<.F¥ 2>+,

"', text)

\
subject
Government News
News
politicsNews
worldnews

Government News

class

ORrRFRPROO®



text = re.sub('[%s]"' % re.escape(string.punctuation), '', text)
text re.sub('\n', "', text)

text = re.sub("\w*\d\w*', "', text)

return text

df["text"] = df["text"].apply(wordopt)
Defining dependent and independent variables
x = df["text"]
y = df["class"]

Splitting Training and Testing
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

Convert text to vectors
from sklearn.feature_extraction.text import TfidfVectorizer

vectorization = TfidfVectorizer()
xv_train = vectorization.fit_transform(x_train)
xv_test = vectorization.transform(x_test)

logistic regression
from sklearn.linear_model import LogisticRegression

LR = LogisticRegression()
LR.fit(xv_train,y train)

LogisticRegression()
pred_lr=LR.predict(xv_test)
LR.score(xv_test, y_test)
0.987260579064588

print(classification_report(y_test, pred_lr))

precision recall fl-score support

9] 0.99 0.99 0.99 5884

1 0.99 0.99 0.99 5341

accuracy 0.99 11225
macro avg 0.99 0.99 0.99 11225
weighted avg 0.99 0.99 0.99 11225

multinomial classification Navie Basian
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, classification_report



NB=MultinomialNB()
NB.fit(xv_train,y_train)

MultinomialNB()
pred_lrnb=NB.predict(xv_test)
NB.score(xv_test, y_test)

0.9357683741648107

print(classification_report(y_test, pred_lrnb))

precision recall f1-score

0 0.93 0.95 0.94

1 0.94 0.92 0.93

accuracy 0.94
macro avg 0.94 0.94 0.94
weighted avg 0.94 0.94 0.94

Decision Tree Classification

support

5884
5341

11225
11225
11225

from sklearn.tree import DecisionTreeClassifier

DT = DecisionTreeClassifier()
DT.fit(xv_train, y_train)

DecisionTreeClassifier()
pred_dt = DT.predict(xv_test)
DT.score(xv_test, y_ test)

0.9965256124721603

print(classification_report(y_test, pred_dt))

precision recall f1-score

9] 1.00 1.00 1.00

1 1.00 1.00 1.00

accuracy 1.00
macro avg 1.00 1.00 1.00
weighted avg 1.00 1.00 1.00

Model Testing
def output lable(n):
if n == 0:

support

5884
5341

11225
11225
11225



return "Fake News"
elif n ==
return "Not A Fake News"

def manual_testing(news):

testing news = {"text":[news]}

new_def_test = pd.DataFrame(testing_news)

new_def test["text"] = new _def test["text"].apply(wordopt)

new X _test = new_def test["text"]

new xv_test = vectorization.transform(new_x_ test)

pred_LR = LR.predict(new_xv_test)

pred_DT = DT.predict(new_xv_test)

pred_NB = NB.predict(new_xv_test)

return print("\n\nLR Prediction: {} \nDT Prediction: {} \NB Prediction:
{r.

format (output_lable(pred_LR[O]),
output_lable(pred _DT[O]),
output_lable(pred_NB[O]), ))

news = str(input())
manual_testing(news)

news = str(input())
manual_testing(news)
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