
Assignment 17 

 

Q1. Explain Data Encryption Standard (DES) and Rivest-Shamir-Adleman (RSA) Algorithms.  

Data Encryption Standard (DES) 
DES is a symmetric-key algorithm for the encryption of electronic data. It was developed in 
the early 1970s at IBM and adopted as a federal standard in the United States in 1977. 

 Key Size: 56 bits 
 Block Size: 64 bits 
 Structure: DES uses a Feistel network with 16 rounds of processing. 
 Subkey Generation: DES generates 16 subkeys, one for each round, from the original 

key. 
 Encryption Process: 

1. Initial Permutation (IP): The 64-bit plaintext block is permuted. 
2. 16 Rounds of Processing: Each round consists of: 

 Expansion: Expanding 32 bits to 48 bits. 
 Subkey Mixing: XOR with the subkey. 
 Substitution: Using S-boxes to transform 48 bits back to 32 bits. 
 Permutation: Rearranging the bits. 

3. Final Permutation (FP): Inverse of the initial permutation. 
 Security: While DES was secure for a time, its 56-bit key size is now considered too 

small, making it vulnerable to brute-force attacks. 
 
Rivest-Shamir-Adleman (RSA) 
RSA is a widely-used public-key cryptosystem for secure data transmission. It was invented 
by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. 

 Key Generation: 
1. Choose two large prime numbers, ppp and qqq. 
2. Compute n=pqn = pqn=pq (the modulus). 
3. Compute ϕ(n)=(p−1)(q−1)\phi(n) = (p-1)(q-1)ϕ(n)=(p−1)(q−1). 
4. Choose an encryption key eee such that 1<e<ϕ(n)1 < e < \phi(n)1<e<ϕ(n) and 

gcd(e,ϕ(n))=1\text{gcd}(e, \phi(n)) = 1gcd(e,ϕ(n))=1. 
5. Compute the decryption key ddd such that ed≡1 (mod ϕ(n))ed \equiv 1 \ 

(\text{mod} \ \phi(n))ed≡1 (mod ϕ(n)). 
 Public Key: (e,n)(e, n)(e,n) 
 Private Key: (d,n)(d, n)(d,n) 

 Encryption: 
 Ciphertext C is computed as C=Me (mod n)C = M^e \ (\text{mod} \ n)C=Me 

(mod n), where MMM is the plaintext. 
 Decryption: 

 Plaintext M is recovered as M=Cd (mod n)M = C^d \ (\text{mod} \ n)M=Cd 
(mod n). 

 Security: RSA's security relies on the difficulty of factoring large integers. Key sizes of 
2048 bits or higher are considered secure. 

 



Q2. Explain Diffie-Hellman Key Exchange Algorithm With an Example. 

The Diffie-Hellman Key Exchange algorithm allows two parties to establish a shared secret 
over an insecure communication channel. It was proposed by Whitfield Diffie and Martin 
Hellman in 1976. 

 Steps: 
1. Agree on a large prime ppp and a primitive root ggg. 
2. Each party generates a private key: 

 Alice chooses a private key aaa and computes A=ga (mod p)A = g^a \ 
(\text{mod} \ p)A=ga (mod p). 

 Bob chooses a private key bbb and computes B=gb (mod p)B = g^b \ 
(\text{mod} \ p)B=gb (mod p). 

3. Exchange public keys AAA and BBB. 
4. Compute the shared secret: 

 Alice computes S=Ba (mod p)S = B^a \ (\text{mod} \ p)S=Ba (mod p). 
 Bob computes S=Ab (mod p)S = A^b \ (\text{mod} \ p)S=Ab (mod p). 

 Example: 
 p=23p = 23p=23, g=5g = 5g=5 
 Alice chooses a=6a = 6a=6, computes A=56 (mod 23)=8A = 5^6 \ (\text{mod} \ 

23) = 8A=56 (mod 23)=8. 
 Bob chooses b=15b = 15b=15, computes B=515 (mod 23)=19B = 5^{15} \ 

(\text{mod} \ 23) = 19B=515 (mod 23)=19. 
 They exchange A=8A = 8A=8 and B=19B = 19B=19. 
 Alice computes S=196 (mod 23)=2S = 19^6 \ (\text{mod} \ 23) = 2S=196 (mod 

23)=2. 
 Bob computes S=815 (mod 23)=2S = 8^{15} \ (\text{mod} \ 23) = 2S=815 

(mod 23)=2. 
 Shared secret S=2S = 2S=2. 

 

Q3. Explain Digital Signature Algorithm (DSA) With an Example.  

DSA is a federal standard for digital signatures that was proposed by the National Institute 
of Standards and Technology (NIST) in 1991. 

 Key Generation: 
1. Choose a prime q and a prime p such that p−1 is a multiple of q. 
2. Choose g where g is a number whose order modulo p is q. 
3. Choose a private key xxx such that 0<x<q. 
4. Compute the public key y=g^x (mod p). 
 Public Key: (p,q,g,y) 
 Private Key: x 

 Signing: 
1. Choose a random number k such that 0<k<q. 
2. Compute r=(g^k (mod p)) (mod q). 
3. Compute s=(k−1(H(m)+xr)) (mod q)s = (k^{-1} (H(m) + xr)) \ (\text{mod} \ 

q)s=(k−1(H(m)+xr)) (mod q), where H(m)H(m)H(m) is the hash of the message 
mmm. 

 The signature is (r,s). 



 Verification: 
1. Compute w=s−1 (mod q)w = s^{-1} \ (\text{mod} \ q)w=s−1 (mod q). 
2. Compute u1=H(m)w (mod q)u_1 = H(m)w \ (\text{mod} \ q)u1=H(m)w (mod 

q) and u2=rw (mod q)u_2 = rw \ (\text{mod} \ q)u2=rw (mod q). 
3. Compute v=((gu1yu2) (mod p)) (mod q)v = ((g^{u_1} y^{u_2}) \ (\text{mod} \ 

p)) \ (\text{mod} \ q)v=((gu1yu2) (mod p)) (mod q). 
 The signature (r,s) is valid if and only if v=r. 

 Example: 
 Choose p=23p = 23p=23, q=11q = 11q=11, g=4g = 4g=4. 
 Private key x=6x = 6x=6, public key y=46 (mod 23)=9y = 4^6 \ (\text{mod} \ 

23) = 9y=46 (mod 23)=9. 
 Signing: 

 Random k=3k = 3k=3, message m="Hello"m = "Hello"m="Hello", 
H(m)=2H(m) = 2H(m)=2. 

 Compute r=(43 (mod 23)) (mod 11)=2r = (4^3 \ (\text{mod} \ 23)) \ 
(\text{mod} \ 11) = 2r=(43 (mod 23)) (mod 11)=2. 

 Compute s=(3−1(2+6⋅ 2)) (mod 11)=7s = (3^{-1} (2 + 6 \cdot 2)) \ 
(\text{mod} \ 11) = 7s=(3−1(2+6⋅ 2)) (mod 11)=7. 

 Signature is (2,7)(2, 7)(2,7). 
 Verification: 

 Compute w=7−1 (mod 11)=8w = 7^{-1} \ (\text{mod} \ 11) = 8w=7−1 
(mod 11)=8. 

 Compute u1=2⋅ 8 (mod 11)=5u_1 = 2 \cdot 8 \ (\text{mod} \ 11) = 5u1
=2⋅ 8 (mod 11)=5, u2=2⋅ 8 (mod 11)=5u_2 = 2 \cdot 8 \ (\text{mod} \ 
11) = 5u2=2⋅ 8 (mod 11)=5. 

 Compute v=(45⋅ 95 (mod 23)) (mod 11)=2v = (4^5 \cdot 9^5 \ 
(\text{mod} \ 23)) \ (\text{mod} \ 11) = 2v=(45⋅ 95 (mod 23)) (mod 
11)=2. 

 Since v=r, the signature is valid. 
 

 


