
ASSIGNMENT -1 

 

Question 1:  

Number game between user and computer. The user starts by entering either 1 or 2 or 3 

digits starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in 

sequence, starting from the max number played by the user. User enters the next 1 or 2 or 

3 next digits in sequence, starting from the max number played by the computer. Whoever 

reaches 20 first wins the game. 

Code 1: 

import random 

def computer_turn(current_number): 

move = random.randint(1, 3) 

next_numbers = list(range(current_number + 1, current_number + move + 1)) 

return next_numbers 

def user_turn(current_number): 

while True: 

try:  

user_input = input(f"Enter 1, 2, or 3 numbers starting from {current_number + 1}: ") 

user_numbers = list(map(int, user_input.split())) 

if len(user_numbers) in [1, 2, 3] and user_numbers[0] == current_number + 1 and user_numbers 

== list(range(user_numbers[0], user_numbers[0] + len(user_numbers))): 

return user_numbers 

else: 

print("Invalid input. Please enter a valid sequence of 1, 2, or 3 consecutive numbers.") 

except ValueError: 

print("Invalid input. Please enter numbers only.") 

def game(): 

current_number = 0 

while current_number < 20: 

user_numbers = user_turn(current_number) 



current_number = user_numbers[-1] 

print(f"You played: {user_numbers}") 

if current_number >= 20: 

print("Congratulations! You reached 20. You win!") 

break 

game() 

 

 

Question 2: 

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use 

this function to print pascal triangle, where number of rows is the input 

Code 2: 

def factorial(num): 

    if num == 0 or num == 1: 

        return 1 

    result = 1 

    for i in range(2, num + 1): 

        result *= i 

    return result 

 

def ncr(n, r): 

    return factorial(n) // (factorial(r) * factorial(n - r)) 

 

def print_pascals_triangle(rows): 

    for row in range(rows): 

        line = [] 

        for col in range(row + 1): 

            line.append(ncr(row, col)) 

        print(" " * (rows - row), "   ".join(map(str, line))) 



 

num_rows = int(input("Enter the number of rows for Pascal's Triangle: ")) 

print_pascals_triangle(num_rows) 

 

Question 3: 

Read a list of n numbers during runtime. Write a Python program to print the repeated 

elements with frequency count in a list. 

Code 3: 

from collections import Counter 

n = int(input("Enter the number of elements in the list: ")) 

numbers = [] 

print("Enter the numbers:") 

for _ in range(n): 

num = int(input()) 

numbers.append(num) 

 

Question 4: 

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a 

file and perform the addition of Matrices A & B and Print the results. 

 

Create a text file named matrices.txt 

Code 4: 

def read_matrix_from_file(filename): 

    with open(filename, 'r') as file: 

        lines = file.readlines() 

     

    matrix_a = [] 

    for i in range(1, 3): 

        row = list(map(int, lines[i].strip().split())) 



        matrix_a.append(row) 

 

    matrix_b = [] 

    for i in range(5, 7): 

        row = list(map(int, lines[i].strip().split())) 

        matrix_b.append(row) 

 

    return matrix_a, matrix_b 

 

def add_matrices(matrix_a, matrix_b): 

    result = [] 

    for i in range(2): 

        row = [] 

        for j in range(2): 

            row.append(matrix_a[i][j] + matrix_b[i][j]) 

        result.append(row) 

    return result 

 

def print_matrix(matrix): 

    for row in matrix: 

        print(' '.join(map(str, row))) 

 

filename = 'matrices.txt' 

matrix_a, matrix_b = read_matrix_from_file(filename) 

result_matrix = add_matrices(matrix_a, matrix_b) 

 

print("Result of Matrix A + Matrix B:") 

print_matrix(result_matrix) 



 

Question 5: 

Write a program that overloads the + operator so that it can add two objects of the class 

Fraction. 

Fraction can be considered of the for P/Q where P is the numerator and Q is the 

denominator 

Code 5: 

class Fraction: 

    def __init__(self, numerator, denominator): 

        if denominator == 0: 

            raise ValueError("Denominator cannot be zero") 

        self.numerator = numerator 

        self.denominator = denominator 

         

    def __add__(self, other): 

        if not isinstance(other, Fraction): 

            return NotImplemented 

        new_numerator = (self.numerator * other.denominator) + (other.numerator * 

self.denominator) 

        new_denominator = self.denominator * other.denominator 

        return Fraction(new_numerator, new_denominator) 

     

    def __str__(self): 

        return f"{self.numerator}/{self.denominator}" 

 

frac1 = Fraction(1, 2) 

frac2 = Fraction(3, 4) 

result_frac = frac1 + frac2 

print(f"The result of adding {frac1} and {frac2} is {result_frac}") 


