2306 AML128

BHASKARBABU ALAM
Importing Data

import pandas as pd
import os

ds = pd.read json('Sarcasm Headlines Dataset.json', lines = True)

Viewing the data

ds

article link \
https://www.huffingtonpost.com/entry/versace-b...
https://www.huffingtonpost.com/entry/roseanne-...
https://local.theonion.com/mom-starting-to-fea...
https://politics.theonion.com/boehner-just-wan...
https://www.huffingtonpost.com/entry/jk-rowlin...

P WNRERO

26704 https://www.huffingtonpost.com/entry/american-...
26705 https://www.huffingtonpost.com/entry/americas-...
26706 https://www.huffingtonpost.com/entry/reparatio...
26707 https://www.huffingtonpost.com/entry/israeli-b...
26708 https://www.huffingtonpost.com/entry/gourmet-g...

headline 1is sarcastic

0 former versace store clerk sues over secret 'b... 0
1 the 'roseanne' revival catches up to our thorn... 0
2 mom starting to fear son's web series closest ... 1
3 boehner just wants wife to listen, not come up... 1
4 j.kK. rowling wishes snape happy birthday in th... 0
26704 american politics in moral free-fall 0
26705 america's best 20 hikes 0
26706 reparations and obama 0
26707 1israeli ban targeting boycott supporters raise... 0
26708 gourmet gifts for the foodie 2014 0

[26709 rows Xx 3 columns]

Sravya
2306 AML128
BHASKARBABU ALAM

Reading the first few headlines to understand the mix

ds['headline'][0 : 20]

0 former versace store clerk sues over secret 'b...
1 the 'roseanne' revival catches up to our thorn...
2 mom starting to fear son's web series closest ...
3 boehner just wants wife to listen, not come up...
4 j.k. rowling wishes snape happy birthday in th..

5 advancing the world's women
6 the fascinating case for eating lab-grown meat
7 this ceo will send your kids to school, if you...
8 top snake handler leaves sinking huckabee camp...
9 friday's morning email: inside trump's presser...
10 airline passengers tackle man who rushes cockp...
11 facebook reportedly working on healthcare feat...
12 north korea praises trump and urges us voters ...
13 actually, cnn's jeffrey lord has been 'indefen...
14 barcelona holds huge protest in support of ref...
15 nuclear bomb detonates during rehearsal for 's...
16 cosby lawyer asks why accusers didn't come for...
17 stock analysts confused, frightened by boar ma...
18 bloomberg's program to build better cities jus..

19 craig hicks 1nd1cted

Name: headline, dtype: object

Cleaning the strings in headlines to remove special characters, numbers etc

import re
from nltk.corpus import stopwords
import nltk
import string
nltk.download('stopwords"')
stopwords = set(stopwords.words('english'))
def clean(text):
text = re.sub(r'\d+', '', text)
text = "".join([char for char in text if char not in
string.punctuation])
return text

ds['headline'] = ds['headline'].apply(clean)
[nltk data] Downloading package stopwords to

[nltk data] /Users/sravya/nltk data...
[nltk datal Package stopwords is already up-to-date!

Checking the data after cleaning

ds['headline'][0 : 20]

0 former versace store clerk sues over secret bl...
1 the roseanne revival catches up to our thorny ...
2 mom starting to fear sons web series closest t...
3 boehner just wants wife to listen not come up ...
4 jk rowling wishes snape happy birthday in the ...
5 advancing the worlds women
6 the fascinating case for eating labgrown meat
7 this ceo will send your kids to school if you

8 top snake handler leaves sinking huckabee camp...
9 fridays morning email inside trumps presser fo...
10 airline passengers tackle man who rushes cockp...
11 facebook reportedly working on healthcare feat...
12 north korea praises trump and urges us voters ...
13 actually cnns jeffrey lord has been indefensib...
14 barcelona holds huge protest in support of ref...
15 nuclear bomb detonates during rehearsal for sp...
16 cosby lawyer asks why accusers didnt come forw..
17 stock analysts confused frightened by boar market
18 bloombergs program to build better cities just..

19 craig hicks indicted

Name: headline, dtype: object

As we can see we now have data to work with

Removing unnecesary columns
ds.drop('article link', inplace = True, axis = 1)
Finding the maximum length for padding

maxlen = max([len(text) for text in ds['headline']])

Making all necessary imports

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad sequences
from tensorflow.keras.layers import Dense, Input, LSTM, Embedding,
Dropout, Activation, Flatten, Bidirectional, GlobalMaxPoollD

from tensorflow.keras.models import Model, Sequential

Setting parameters/attributes

max features = 10000
maxlen = max([len(text) for text in ds['headline']])
embedding size = 200

Tokenizer

tokenizer = Tokenizer(num words = max features, filters = '!"#$
%&()*+,-./:;<=>?@[\\]" " {|}~\t\n', lower = True, split = ' ',
char level = False)

tokenizer.fit on texts(ds['headline'])

X = tokenizer.texts to sequences(ds['headline'])
X = pad sequences (X, maxlen = maxlen)

y = np.asarray(ds['is sarcastic'])

print("No of Samples - ", len(X))

print(X[0])

print("No of Labels - ", len(y))

print(y[0])

No of Samples - 26709

[0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 287 780 3505 2213 47 353 92 211

2476 8139]

No of Labels - 26709

0

Volume of vocabulary

num words = len(tokenizer.word index)
print(num words)

27667

GloVe Embedding

glove file = "glove.6B.zip"

alcoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)

S NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoN ol

from zipfile import ZipFile
with ZipFile(glove file, 'r') as z:
z.extractall()

EMBEDDING FILE = 'glove.6B.200d.txt'

embeddings = {}
for o in open(EMBEDDING FILE):

word = o.split(" ")[0O]
embd = o.split(" ")[1 :]
embd = np.asarray(embd, dtype = 'float32')

embeddings[word] = embd

Creating Weight Matrix

embedding matrix = np.zeros((num words, 200))

for word, i in tokenizer.word index.items():
embedding vector = embeddings.get(word)
if embedding vector is not None:
embedding matrix[i] = embedding vector

len(embeddings.values())

IndexError Traceback (most recent call
last)
Cell In[42], line 6
4 embedding vector = embeddings.get(word)
5 if embedding vector is not None:
---->6 embedding matrix[i] = embedding vector

8 len(embeddings.values())

IndexError: index 27667 is out of bounds for axis 0 with size 27667

Compiling the model after creation

import tensorflow as tf

input layer = Input(shape = (maxlen,), dtype = tf.int64)

embed = Embedding(embedding matrix.shape[Q], output dim = 200, weights
= [embedding matrix], input length = maxlen, trainable = True)

(input layer)

lstm = Bidirectional (LSTM(128)) (embed)

drop = Dropout(0.3) (lstm)

dense = Dense(100,activation = 'relu') (drop)

out = Dense(2,activation = 'softmax') (dense)

Fit your model with a batch size of 100 and validation_split = 0.2. and state the validation
accuracy

batch size = 100
epochs = 5

model = Model(input layer,out)

model.compile(loss = 'sparse categorical crossentropy', optimizer =
"adam", metrics = ['accuracy'])

model.summary ()

Model: "model"

Layer (type) Output Shape Param #
input 1 (InputLayer) [(None, 240)] 0
embedding (Embedding) (None, 240, 200) 5533400
bidirectional (Bidirection (None, 256) 336896
al)

dropout (Dropout) (None, 256) 0

dense (Dense) (None, 100) 25700
dense 1 (Dense) (None, 2) 202

Total params: 5896198 (22.49 MB)
Trainable params: 5896198 (22.49 MB)
Non-trainable params: 0 (0.00 Byte)

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size =
0.2, random state = 10)

model.fit(X train, y train, batch size = batch size, epochs = epochs,
verbose = 1)

Epoch 1/5

214/214 [] - 164s 751ms/step - loss:
0.4483 - accuracy: 0.7822

Epoch 2/5

214/214 [] - 163s 763ms/step - loss:
0.2628 - accuracy: 0.8937

Epoch 3/5

214/214 [] - 168s 783ms/step - loss:
0.1826 - accuracy: 0.9277

Epoch 4/5

214/214 [] - 175s 819ms/step - loss:
0.1157 - accuracy: 0.9571

Epoch 5/5

214/214 [] - 183s 853ms/step - loss:

0.0738 - accuracy: 0.9734
<keras.src.callbacks.History at Ox7ff135001b10>

test pred = model.predict(np.array(X test), verbose = 1)
167/167 [1 - 17s 99ms/step
test pred = [1 if j > 1 else O for i, j in test pred]

from sklearn.metrics import confusion matrix
confusion matrix(y test, test pred)

array([[2686, 345],
[376, 1935]1])

from sklearn.metrics import classification report

print(classification report(y test, test pred))

precision recall fl-score support

0 0.88 0.89 0.88 3031

1 0.85 0.84 0.84 2311
accuracy 0.87 5342
macro avg 0.86 0.86 0.86 5342

weighted avg 0.86 0.87 0.86 5342

