
Assignment 8

1. Using the python library Scapy, analyse the network packets associate with the suspicious
IP address provided

To analyze network packets associated with a suspicious IP address using the Scapy library in
Python, you can capture packets on the network interface and filter packets based on the
source or destination IP address. Below is an example code snippet to demonstrate this:

from scapy.all import *

Define the suspicious IP address to filter packets

suspicious_ip = "192.168.1.1"

Define a callback function to handle each captured packet

def packet_callback(packet):

if IP in packet and (packet[IP].src == suspicious_ip or packet[IP].dst == suspicious_ip):

Print information about the suspicious packet

print(f"Captured Packet: {packet.summary()}")

Start capturing packets on the network interface 'eth0' and filter based on the suspicious IP
address

print("Starting packet capture for suspicious IP address...")

sniff(iface='eth0', prn=packet_callback, filter=f"host {suspicious_ip}", count=10)

'count=10' specifies to capture and process only 10 packets, change as needed

Explanation of the code:

from scapy.all import *: Import all Scapy functionalities.

suspicious_ip = "192.168.1.1": Define the suspicious IP address you want to filter packets for.

packet_callback(packet): Callback function that handles each captured packet. It checks if the
packet is an IP packet and if the source or destination IP matches the suspicious IP address.

sniff(iface='eth0', prn=packet_callback, filter=f"host {suspicious_ip}", count=10): Starts capturing
packets on the network interface 'eth0' and filters packets based on the suspicious IP address
using the BPF (Berkeley Packet Filter) syntax. The prn argument specifies the callback function
to be called for each captured packet, and count=10 specifies to capture and process only 10
packets. You can change the count as needed.

Note: Replace 'eth0' with the appropriate network interface on your system. Additionally, running
packet capture scripts requires administrative privileges on most systems. Also, modify the
suspicious_ip variable to the actual suspicious IP address you want to analyze.

2. Step by step breakdown the process you followed to capture and analyse the network
traffic

Import Scapy Library:

Import the Scapy library in Python using the following import statement:

from scapy.all import *

Define Suspicious IP Address:

Define the suspicious IP address that you want to filter packets for. This is the IP address you
suspect may be involved in suspicious network activity.

suspicious_ip = "192.168.1.1" # Replace with the actual suspicious IP address

Define Packet Callback Function:

Define a callback function that will be called for each captured packet. This function will analyze
the packets and print information about suspicious packets.

def packet_callback(packet):

if IP in packet and (packet[IP].src == suspicious_ip or packet[IP].dst == suspicious_ip):

print(f"Captured Packet: {packet.summary()}")

Start Packet Capture:

Start capturing packets on the specified network interface ('eth0' in this example) using the sniff
function. Provide the callback function (packet_callback) as the prn argument to handle each
captured packet.

Use the filter argument to specify a filter expression to capture packets only related to the
suspicious IP address. The filter expression in this case is "host {suspicious_ip}".

Use the count argument to specify the number of packets to capture and process. In this
example, count=10 captures and processes only 10 packets.

print("Starting packet capture for suspicious IP address...")

sniff(iface='eth0', prn=packet_callback, filter=f"host {suspicious_ip}", count=10)

Run the Script:

Run the Python script containing the above code. Ensure that you have administrative privileges
to capture network packets.

The script will start capturing packets on the specified network interface ('eth0' in this example)
and filter packets based on the suspicious IP address.

For each captured packet that matches the filter criteria, the callback function (packet_callback)
will be called, and information about suspicious packets will be printed.

Analysis of Captured Packets:

As the script runs and captures packets, it will print information about packets where the
suspicious IP address is either the source or destination IP.

Analyze the printed information to gain insights into the network traffic associated with the
suspicious IP address. The printed information typically includes packet summaries, including
IP addresses, protocols, port numbers, and payload details.

Modify and Customize:

Modify the script as needed to customize the packet capture and analysis process. You can
change the network interface, filter criteria, callback function logic, and other parameters based
on your specific requirements and use cases.

By following these steps, you can capture and analyze network traffic associated with a
suspicious IP address using the Scapy library in Python.

3. Identification and interpretation of any suspicious are anomalous network behaviour
observed in the captured pockets

In the context of network traffic analysis using Scapy, identification and interpretation of
suspicious or anomalous network behavior typically involve examining packet information,
patterns, anomalies, and potential indicators of malicious activity. Below are some common
types of suspicious or anomalous network behavior that you might observe in captured packets
and how to interpret them:

Unusual Port Activity:

Identify packets where the source or destination port is commonly associated with malicious
services or known vulnerabilities (e.g., ports used by malware, backdoors, or exploit
frameworks).

Interpretation: This could indicate attempts to exploit services, establish unauthorized
connections, or perform reconnaissance on vulnerable ports.

Abnormal Protocol Usage:

Detect packets using uncommon or unexpected protocols, especially if they are not typically
used in your network environment (e.g., non-standard application protocols, unusual transport
layer protocols).

Interpretation: This may suggest attempts to bypass security controls, communicate covertly, or
perform data exfiltration using unconventional protocols.

Large Volume of Outbound Traffic:

Notice a significant increase in outbound traffic from a specific host or to suspicious external IP
addresses.

Interpretation: This could indicate command-and-control (C2) communication, data exfiltration,
or compromised systems sending out large amounts of data.

Unusual Payload Patterns:

Analyze packet payloads for unusual patterns, such as encrypted data, obfuscated commands,
unexpected file transfers, or known malware signatures.

Interpretation: Suspicious payload patterns may indicate malicious activities like malware
infections, command execution, or data theft.

Unexpected DNS Requests:

Observe DNS requests for suspicious domain names, unusual subdomains, or frequent queries
to known malicious domains.

Interpretation: This could indicate DNS tunneling, domain generation algorithms (DGAs), or
communication with malicious command-and-control servers.

Unauthenticated Access Attempts:

Look for packets attempting unauthorized access to sensitive services, systems, or resources
without proper authentication.

Interpretation: This behavior may indicate brute-force attacks, credential stuffing, or
unauthorized access attempts by malicious actors.

Network Scans or Probes:

Identify packets that conduct scanning activities, such as port scans, service enumeration, OS
fingerprinting, or vulnerability scanning.

Interpretation: This suggests reconnaissance efforts by attackers to identify potential targets,
vulnerabilities, or weak points in the network.

Suspicious Traffic Patterns:

Analyze traffic patterns for spikes, bursts, unusual traffic flows, unexpected protocol
combinations, or deviations from normal baseline traffic.

Interpretation: These patterns may indicate denial-of-service (DoS) attacks, network anomalies,
compromised systems, or malicious activities attempting to blend in with legitimate traffic.

Unauthorized Protocol Usage:

Detect the use of protocols or services that are not approved or expected in your network
environment (e.g., file sharing protocols, remote access protocols).

Interpretation: This behavior could signify policy violations, unauthorized activities, or attempts
to establish unauthorized communication channels.

Repeated Failed Authentication Attempts:

Monitor packets containing repeated failed authentication attempts, especially for critical
services or privileged accounts.

Interpretation: This may indicate brute-force attacks, password guessing, or credential spraying
attempts to compromise user accounts.

When interpreting suspicious or anomalous network behavior observed in captured packets, it's
important to consider contextual information, network policies, baseline traffic patterns, known
threat intelligence, and historical data. Correlating packet analysis with other security
monitoring tools, logs, and incident response processes can provide a comprehensive
understanding of potential security incidents and aid in timely response and mitigation efforts.

4. Recommendations for mitigating the identified security risk and securing the network
against similar threads in the future.

Mitigating identified security risks and securing the network against similar threats in the future
requires a proactive approach that combines technical controls, best practices, user awareness,
and continuous monitoring. Here are some recommendations for mitigating security risks and
enhancing network security:

Patch Management:

Ensure all systems, applications, and network devices are regularly patched and updated with
the latest security patches, bug fixes, and firmware updates. Establish a patch management
process that prioritizes critical vulnerabilities and applies patches promptly.

Network Segmentation:

Implement network segmentation to divide the network into separate zones or segments based
on security requirements, trust levels, and data sensitivity. Use firewalls, VLANs, access control
lists (ACLs), and segmentation policies to restrict unauthorized access between segments.

Strong Authentication and Access Controls:

Enforce strong authentication mechanisms, such as multi-factor authentication (MFA), strong
passwords, and secure authentication protocols (e.g., LDAP, Kerberos). Implement least
privilege access controls to limit user privileges and access rights based on job roles and
responsibilities.

Network Monitoring and Logging:

Deploy network monitoring tools, intrusion detection systems (IDS), intrusion prevention
systems (IPS), and security information and event management (SIEM) solutions to monitor
network traffic, detect anomalies, and identify potential security incidents in real time. Enable
logging and log aggregation for better visibility and incident response.

Endpoint Security:

Implement endpoint security measures, such as antivirus/antimalware software, host-based
firewalls, device encryption, and application whitelisting. Regularly update and patch endpoint
devices, and enforce security policies for BYOD (Bring Your Own Device) and remote work
environments.

Data Encryption:

Use encryption protocols (e.g., SSL/TLS, IPsec) to encrypt sensitive data in transit and at rest.
Implement encryption for email communications, file transfers, databases, and sensitive
information stored on servers, laptops, and mobile devices.

Employee Training and Awareness:

Conduct regular cybersecurity training sessions and awareness programs for employees to
educate them about security best practices, phishing attacks, social engineering tactics, and
how to recognize and report suspicious activities. Foster a culture of security awareness and
accountability within the organization.

Incident Response Plan (IRP):

Develop and maintain an incident response plan (IRP) that outlines roles, responsibilities,
escalation procedures, communication protocols, and incident handling workflows. Test the IRP
regularly through tabletop exercises and simulated incident scenarios to ensure preparedness
and effectiveness.

Vendor and Third-Party Risk Management:

Evaluate and manage risks associated with vendors, suppliers, contractors, and third-party
service providers. Conduct security assessments, due diligence reviews, and contract
negotiations to ensure third parties adhere to security standards and compliance requirements.

Continuous Monitoring and Auditing:

Implement continuous monitoring and auditing processes to assess network security controls,
configurations, policies, and compliance with security standards (e.g., ISO 27001, NIST
Cybersecurity Framework). Conduct regular security assessments, vulnerability scans,
penetration testing, and audits to identify and address security gaps.

By implementing these recommendations and adopting a comprehensive approach to network
security, organizations can mitigate identified security risks, enhance resilience against cyber
threats, and safeguard sensitive data and assets from unauthorized access, exploitation, and
disruption. Regularly review and update security measures based on evolving threats, industry
trends, and lessons learned from security incidents to maintain a robust security posture.

Expected code

from scapy.all import *

Define a callback function to handle each captured packet

def packet_callback(packet):

if IP in packet:

ip_src = packet[IP].src

ip_dst = packet[IP].dst

proto = packet[IP].proto

print(f"IP Packet: Source IP - {ip_src}, Destination IP - {ip_dst}, Protocol - {proto}")

if TCP in packet:

tcp_sport = packet[TCP].sport

tcp_dport = packet[TCP].dport

print(f"TCP Segment: Source Port - {tcp_sport}, Destination Port - {tcp_dport}")

elif UDP in packet:

udp_sport = packet[UDP].sport

udp_dport = packet[UDP].dport

print(f"UDP Datagram: Source Port - {udp_sport}, Destination Port - {udp_dport}")

elif ICMP in packet:

icmp_type = packet[ICMP].type

icmp_code = packet[ICMP].code

print(f"ICMP Message: Type - {icmp_type}, Code - {icmp_code}")

Start capturing packets on the network interface 'eth0'

print("Starting packet capture...")

sniff(iface='eth0', prn=packet_callback, count=10)

'count=10' specifies to capture and process only 10 packets, change as needed

QUESTION 2

Imagine you are working as a cybersecurity analyst at a prestigious firm. Recently, your
company has been experiencing a surge in cyber attacks, particularly through phishing emails
and websites.

These attacks have not only compromised sensitive information but also tarnished the
reputation of the company.

In light of these events, your team has been tasked with developing a robust solution to detect
and mitigate phishing websites effectively. Leveraging your expertise in Python programming
and cybersecurity, your goal is to create a program that can accurately identify phishing
websites based on various features and indicators.

Assignment Task:

Using the Python programming language, develop a phishing website detection system that
analyzes website characteristics and determines the likelihood of it being a phishing site.

Expected Procedure:

1. Accept 2 web URL. One real and another one phishing.

2. Analyze the data from both the websites.

3. Identify the phishing site.

Expected Code:

1. Phishing Website Detection with Python

Ans: To develop a phishing website detection system in Python, we can use various website
characteristics such as URL structure, domain age, SSL certificate presence, content analysis,
etc. Below is an example code outlining the procedure to accept two web URLs, analyze their
data, and identify the phishing site based on certain criteria.

Expected code

import requests

from bs4 import BeautifulSoup

import re

import whois

import datetime

def get_html_content(url):

try:

response = requests.get(url)

if response.status_code == 200:

return response.text

else:

print(f"Error: Unable to fetch HTML content from {url}")

return None

except Exception as e:

print(f"Error: {e}")

return None

def extract_domain_age(url):

try:

domain = re.search(r"https?://(www\.)?([^/]+)/?", url).group(2)

domain_info = whois.whois(domain)

creation_date = domain_info.creation_date

if type(creation_date) is list:

creation_date = creation_date[0]

if creation_date:

return (datetime.datetime.now() - creation_date).days

else:

return None

except Exception as e:

print(f"Error extracting domain age: {e}")

return None

def analyze_website(url):

features = {}

html_content = get_html_content(url)

if html_content:

soup = BeautifulSoup(html_content, 'html.parser')

Check for HTTPS

features['https'] = 1 if url.startswith("https") else 0

Check for presence of form tags (common in phishing sites)

features['form_tags'] = len(soup.find_all('form'))

Check for domain age

features['domain_age_days'] = extract_domain_age(url)

Check for presence of suspicious keywords in URL or content

keywords = ['login', 'password', 'account', 'bank', 'verify', 'secure']

for keyword in keywords:

features[f'keyword_{keyword}'] = 1 if keyword in url.lower() else 0

features[f'content_{keyword}'] = 1 if soup.find(text=re.compile(keyword, re.IGNORECASE))
else 0

return features

else:

return None

def identify_phishing_site(real_url, phishing_url):

real_features = analyze_website(real_url)

phishing_features = analyze_website(phishing_url)

if not real_features or not phishing_features:

print("Error: Unable to analyze website features.")

return None

Example criteria for phishing detection (you can modify or add more criteria)

phishing_score = 0

if phishing_features['https'] == 0:

phishing_score += 1

if phishing_features['form_tags'] > 0:

phishing_score += 1

if phishing_features['domain_age_days'] and phishing_features['domain_age_days'] < 30:

phishing_score += 1

if phishing_features['keyword_password'] == 1 or phishing_features['content_password'] == 1:

phishing_score += 1

if phishing_score >= 2: # Adjust the threshold as needed

return phishing_url

else:

return real_url

Example usage

real_website_url = "https://www.google.com"

phishing_website_url = "https://example.com/phishing"

phishing_detected = identify_phishing_site(real_website_url, phishing_website_url)

if phishing_detected:

print(f"The detected phishing website is: {phishing_detected}")

else:

print("No phishing website detected.")

