
Cyber Security Fundamentals
Assignment-8

N Ravinder Reddy

Roll No: 2406CYS106
Question - 1

Imagine you are a cybersecurity analyst working for a large multinational

corporation. One morning, your team receives an urgent report about a

potential security breach in the company's network. The IT department has

noticed unusual network activity originating from a particular IP address.

Your team has been tasked with investigating this incident to determine if it

poses a threat to the organization's network security.

Ans: As a cybersecurity analyst, when faced with a potential security breach,
there are several steps I would take to investigate and mitigate the threat:

1. Verify the Report: I would first verify the report provided by the IT
department regarding the unusual network activity from the specific IP

address. This may involve checking logs, network traffic data, and any
other relevant information to confirm the legitimacy of the report.

2. Gather Information: I would gather as much information as possible
about the suspicious IP address, including its geographic location,
ownership details, known associations with malicious activities, and

any previous incidents involving the same IP.
3. Perform Network Analysis: Using network monitoring tools and

intrusion detection systems, I would analyze the network traffic
originating from the suspicious IP address. This includes examining the
type of traffic, ports being used, communication patterns, and any

anomalies that could indicate malicious behavior such as port
scanning, data exfiltration, or unauthorized access attempts.

4. Endpoint Analysis: I would also conduct an analysis of endpoints within

the network to identify any signs of compromise or malware infections.
This involves checking for unusual processes, file modifications,

unauthorized access attempts, and any other indicators of compromise
on the affected systems.

5. Threat Intelligence: I would leverage threat intelligence feeds and

databases to gather information about known threats associated with
the suspicious IP address, including malware signatures, command

and control servers, and indicators of compromise (IOCs). This
information can help identify the nature and severity of the threat.

6. Containment and Mitigation: If the investigation confirms malicious

activity, I would work with the IT department to contain the threat by
blocking or isolating the suspicious IP address, disabling compromised
accounts or endpoints, and implementing additional security controls

to prevent further unauthorized access or data exfiltration.
7. Forensic Analysis: In parallel with containment efforts, I would conduct

a forensic analysis to gather evidence and determine the extent of the

breach. This involves preserving and analyzing logs, system images,
memory dumps, and other artifacts to identify the root cause of the

incident and assess the impact on the organization's network security.
8. Incident Response Plan: Throughout the investigation, I would follow

established incident response procedures and coordinate with relevant
stakeholders, including IT, legal, and senior management, to ensure a
coordinated and effective response to the security breach.

9. Documentation and Reporting: Finally, I would document all findings,
actions taken, and recommendations for future improvements in a
detailed incident report. This report would be shared with key

stakeholders and used to enhance the organization's security posture
and incident response capabilities.

Assignment Question:

1. Using the Python library Scapy, analyze the network packets associated

with the suspicious IP address provided.

Ans: To analyze network packets associated with a suspicious IP address

using the Scapy library in Python, you can capture packets from a network

interface and filter them based on the IP address. Below is a basic example

demonstrating how to achieve this:

pip install scapy

sudo apt-get install libpcap-dev

pip install python-libpcap

Expected Procedure:

1. A detailed explanation of how Scapy can be utilized to capture and dissect

network packets.

Ans: Scapy is a powerful Python library used for crafting, sending, receiving,
and dissecting network packets. It provides a flexible and intuitive interface

to work with packets at a low level, allowing for the creation of custom tools
for network analysis, manipulation, and testing. Here's a detailed explanation

of how Scapy can be utilized to capture and dissect network packets:

1. Installation: First, you need to install Scapy. You can do this via pip,
the Python package manager:

 pip install scapy

 Importing Scapy: After installation, you need to import Scapy into your
Python script or interactive environment:

python
 from scapy.all import *

 Capturing Packets: Scapy allows you to capture packets from the network
interface using the sniff() function. You can specify various parameters such

as the number of packets to capture, filters, and callback functions. Here's a
basic example to capture 10 packets:

python

 packets = sniff(count=10)

 Dissecting Packets: Once you have captured packets, you can dissect them
to extract various fields and analyze their contents. Scapy provides a Packet
object for each captured packet, allowing you to access and manipulate its

attributes. For example, you can print the summary of each packet:

python
 for packet in packets:

 print(packet.summary())

 Accessing Packet Fields: Scapy allows you to access individual fields of a
packet using dot notation. You can access fields by their names or use
methods provided by Scapy to extract specific information. For example, to

access the source and destination IP addresses of a packet:

python
 src_ip = packet[IP].src

dst_ip = packet[IP].dst

 Creating Packets: Scapy enables you to create custom packets by specifying
their fields and values. You can use various layers and protocols supported

by Scapy to craft packets tailored to your needs. For example, creating a
simple ICMP echo request packet:

python

 packet = IP(dst="8.8.8.8")/ICMP()

 Sending Packets: Once you've created a packet, you can send it over the
network using the send() function. Scapy handles the low-level details of

packet transmission for you:

python
 send(packet)

 Further Analysis and Manipulation: Scapy provides extensive capabilities
for further analysis and manipulation of packets. You can perform tasks such

as modifying packet fields, crafting responses, generating traffic patterns for
testing, and implementing custom protocols.

 Saving and Loading Packets: Scapy allows you to save captured packets to

a file and load them later for analysis. You can save packets in various
formats, such as pcap or pickle. For example, to save captured packets to a
pcap file:

python
wrpcap("captured_packets.pcap", packets)

And to load packets from a pcap file:

python
9. packets = rdpcap("captured_packets.pcap")

10.

By leveraging the capabilities of Scapy, you can effectively capture, dissect,
analyze, and manipulate network packets for various purposes, including

network troubleshooting, security analysis, and protocol development.

2. A step-by-step breakdown of the process you followed to capture and

analyze the network traffic.

3. Identification and interpretation of any suspicious or anomalous network

behavior observed in the captured packets.

4. Recommendations for mitigating the identified security risks and securing

the network against similar threats in the future.

Expected Code:

1. Write a python code to Network Packet Analysis with Scapy.

Ans: Below is a basic Python script demonstrating network packet analysis

using Scapy. This script captures packets from the network interface,

analyzes them, and prints out some basic information about each packet.

This script does the following:

1. Imports necessary modules from Scapy.

2. Defines a callback function packet_callback which is called for each
captured packet.

3. Within the callback function, it checks if the packet contains Ethernet,
IP, and TCP layers and extracts relevant information such as source
and destination addresses, and source and destination ports.

4. Prints out the extracted information.
5. Uses the sniff() function to capture packets, specifying the callback

function and the number of packets to capture (in this case, 10).

Question - 2

Imagine you are working as a cybersecurity analyst at a prestigious firm.

Recently, your company has been experiencing a surge in cyber attacks,

particularly through phishing emails and websites. These attacks have not

only compromised sensitive information but also tarnished the reputation of

the company. In light of these events, your team has been tasked with

developing a robust solution to detect and mitigate phishing websites

effectively. Leveraging your expertise in Python programming and

cybersecurity, your goal is to create a program that can accurately identify

phishing websites based on various features and indicators.

Ans: To develop a robust solution for detecting and mitigating phishing
websites, we can leverage machine learning techniques combined with
feature engineering. Python offers several libraries and tools that are well-

suited for this task, including Scikit-learn for machine learning, Pandas for
data manipulation, and Beautiful Soup for web scraping. Here's a high-level

outline of the approach:

1. Data Collection:
o Gather a dataset of labeled examples of phishing and legitimate

websites. You can find datasets online or create your own by

collecting samples of known phishing and legitimate websites.
2. Feature Extraction:

o Extract relevant features from the website URLs, HTML content,
and other metadata. Features can include domain age, SSL
certificate validity, presence of suspicious keywords, number of

redirects, etc.
3. Data Preprocessing:

o Clean and preprocess the data, handling missing values,
encoding categorical variables, and scaling numerical features
as necessary.

4. Model Training:
o Select appropriate machine learning algorithms such as

Random Forest, Gradient Boosting, or Support Vector

Machines.
o Split the dataset into training and testing sets.

o Train the model on the training data and evaluate its
performance on the testing data using metrics like accuracy,
precision, recall, and F1-score.

5. Hyperparameter Tuning:
o Fine-tune the hyperparameters of the model using techniques

like grid search or random search to optimize its performance.

6. Validation and Cross-Validation:
o Validate the model using cross-validation techniques to ensure

its robustness and generalization to unseen data.
7. Model Deployment:

o Once satisfied with the model's performance, deploy it into a

production environment where it can be used to detect phishing
websites in real-time.

8. Continuous Monitoring and Updates:
o Regularly monitor the model's performance and update it as

needed to adapt to new phishing techniques and emerging

threats.

Assignment Task:

Using the Python programming language, develop a phishing website

detection system that analyzes website characteristics and determines the

likelihood of it being a phishing site.

Ans: o develop a phishing website detection system in Python, we'll create a

script that analyzes various characteristics of a website and uses a machine

learning model to determine the likelihood of it being a phishing site. We'll

use the RandomForestClassifier algorithm from the Scikit-learn library for

this purpose. Below is a step-by-step implementation

Install Required Libraries:

• Make sure you have Scikit-learn installed. You can install it via pip if
you haven't already:

bash

1. pip install scikit-learn
2.

3. Feature Selection:
o Decide which features to use for detecting phishing websites.

Common features include URL length, presence of HTTPS,

presence of "@" symbol in the URL, etc.
4. Model Training:

o Train a RandomForestClassifier using a labeled dataset of

phishing and legitimate websites. Ensure you preprocess the
data appropriately (e.g., handling missing values, encoding

categorical variables).
5. Website Analysis:

o Write a function to extract features from a given website URL
and use the trained model to predict the likelihood of it being a

phishing site.

Here's a sample implementation:

python
import pandas as pd

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

import tldextract
import requests

from bs4 import BeautifulSoup

Load dataset (replace with your dataset)

dataset = pd.read_csv('phishing_dataset.csv')

Feature selection (modify as needed)

features = ['url_length', 'https', 'has_at_symbol', 'has_redirect', 'has_form']

Split dataset into features (X) and target (y)
X = dataset[features]
y = dataset['label']

Train-test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

Initialize and train RandomForestClassifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

Make predictions

y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)

Evaluate model
train_accuracy = accuracy_score(y_train, y_pred_train)
test_accuracy = accuracy_score(y_test, y_pred_test)

print(f"Training Accuracy: {train_accuracy:.2f}")
print(f"Testing Accuracy: {test_accuracy:.2f}")

Function to extract features from a website URL
def extract_features(url):

 try:
 response = requests.get(url)

 soup = BeautifulSoup(response.content, 'html.parser')
 url_length = len(url)

 https = 1 if url.startswith("https") else 0
 has_at_symbol = 1 if "@" in url else 0

 has_redirect = 1 if soup.find('meta', {'http-equiv': 'refresh'}) else 0
 has_form = 1 if soup.find('form') else 0

 return [url_length, https, has_at_symbol, has_redirect, has_form]
 except Exception as e:
 print(f"Error processing URL: {e}")

 return None

Function to predict phishing likelihood

def predict_phishing(url):
 features = extract_features(url)

 if features:
 prediction = model.predict([features])[0]
 probability = model.predict_proba([features])[0][1]

 return prediction, probability
 else:

 return None, None

Test the prediction function

url_to_check = "https://example.com"
prediction, probability = predict_phishing(url_to_check)
if prediction is not None:

 print(f"The URL '{url_to_check}' is {'likely phishing' if prediction == 1 else
'likely legitimate'} with a probability of {probability:.2f}")

else:
 print("Unable to make a prediction for the given URL.")

Replace 'phishing_dataset.csv' with the path to your dataset file containing
labeled examples of phishing and legitimate websites. Modify the feature

selection and extraction functions to include relevant features for your
detection system. Finally, test the predict_phishing function with a website

URL to see the prediction and probability of it being a phishing site.

Expected Procedure:

1. Accept 2 web URL. One real and another one phishing.

URL phishing attacks can use various means to trick a user into clicking on

the malicious link. For example, a phishing email may claim to be from a

legitimate company asking the user to reset their password due to a potential

security incident.

URL phishing attacks can use various means to trick a user into clicking on
the malicious link. For example, a phishing email may claim to be from a

legitimate company asking the user to reset their password due to a potential
security incident. Alternatively, the malicious email that the user needs to

verify their identity for some reason by clicking on the malicious link.

Once the link has been clicked, the user is directed to the malicious phishing
page. This page may be designed to harvest a user’s credentials or other

sensitive information under the guise of updating a password or verifying a
user’s identity. Alternatively, the site may serve a “software update” for the

user to download and execute that is actually malware.

URL phishing attacks can be detected in a few different ways. Some of the
common solutions include:

• URL Filtering: Some phishing URLs are used multiple times and are
included in threat intelligence feeds. Blocking these known-bad URLs

can help to prevent less-sophisticated phishing emails from reaching
users’ inboxes.

• Domain Reputation: Anti-phishing products commonly look for warning
signs of phishing URLs within emails. For example, a domain that is
only a few hours old is likely malicious.

• DMARC Verification: DMARC verification uses SPF or DKIM to verify
that an email originates from the alleged source domain. This helps with
detecting and blocking spoofed source addresses.

These common phishing detection mechanisms can catch the low-hanging
fruit. However, phishers are growing more sophisticated and using methods
that bypass these common techniques. For example, phishing sites may be

hosted on SaaS solutions, which provides them with legitimate domains.
Protecting against these more sophisticated attacks requires a more robust
approach to URL scanning.

2. Analyze the data from both the websites.

If you want to collect and compare data from different websites, you need

some tools and techniques to help you. Web scraping and web crawling are

two methods that can automate the process of extracting data from web

pages.

3. Identify the phishing site.

A phishing website (spoofed website) is a common deception tactic threat

actors utilize to steal real login credentials to legitimate websites. This

operation, commonly called credential theft, involves sending victims an email

that spoofs a trusted brand, trying to trick them into clicking on a malicious

link.

To identify phishing websites, users can employ various strategies, such as:

Checking the URL: Carefully examine the website's URL for any

inconsistencies, misspellings, or other irregularities that might indicate a

fraudulent site. Attackers often use look-alike domains or subtly altered URLs

to deceive users

https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-phishing/how-to-prevent-phishing-attacks/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-phishing/what-is-email-spoofing/

Security systems scan incoming emails and assess elements, such as email

headers, attachments, and embedded links, to identify potential threats.

Advanced algorithms analyze email content for phishing indicators, including

suspicious keywords, misspelled domains, grammar errors, or requests for

sensitive information.

Expected Code:

1. Phishing Website Detection with Python

Detecting phishing websites typically involves analyzing various features of a website to determine if

it is legitimate or fraudulent. Here's a simple example of how you can detect phishing websites using

Python with the help of machine learning libraries like scikit-learn:

This script demonstrates a simple approach to detecting phishing websites. It

first extracts text from web pages, then extracts features from the text (in this

case, the number of hyperlinks, forms, and iframes). Finally, it trains a

Random Forest classifier on these features to distinguish between phishing

and legitimate websites.

