Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence, starting from the max number played by the user. User enters the next 1 or 2 or 3 next digits in sequence, starting from the max number played by the computer. Whoever reaches 20 first wins the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

Example 1:

Player: 1 2

Computer played: [3, 4]

Player: 5 6 7

Computer played: [8, 9]

Player: 10

Computer played: [11, 12, 13]

Player: 14 15

Computer played: [16, 17, 18]

Player: 19 20

Player Wins!!!
Example 2:

Player: 1

Computer played: [2, 3]

Player: 4 5

Computer played: [6, 7, 8]

Player: 9 10

Computer played: [11]

Player: 12

Computer played: [13]

Player: 14 15

Computer played: [16]

Answer:
import random

def computer_move(last_num):

 max_play = min(3, 20 - last_num) # Ensures the computer doesn't go beyond 20

 move = random.randint(1, max_play)

 return list(range(last_num + 1, last_num + 1 + move))

def play_game():

 last_num = 0

 while last_num < 20:

 player_move = input("Your move (enter 1-3 numbers separated by space): ")

 player_nums = list(map(int, player_move.split()))

 last_num = max(player_nums)

 if last_num >= 20:

 print("Player Wins!")

 break
 comp_nums = computer_move(last_num)

 print(f"Computer played: {comp_nums}")

 last_num = max(comp_nums)

 if last_num >= 20:

 print("Computer Wins!")

 break

play_game()
Question 2:
Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this function to print pascal triangle, where number of rows is the input
Answer: def ncr(n, r):

 if r == 0 or r == n:

 return 1

 return ncr(n - 1, r - 1) + ncr(n - 1, r)

def pascal_triangle(rows):

 for i in range(rows):

 row = [ncr(i, j) for j in range(i + 1)]

 print(" " * (rows - i), row)

rows = int(input("Enter number of rows for Pascal's Triangle: "))

pascal_triangle(rows)
output: Enter number of rows for Pascal's Triangle: 5

 [1]

 [1, 1]

 [1, 2, 1]

 [1, 3, 3, 1]

 [1, 4, 6, 4, 1]

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated elements with frequency count in a list.

Example :

Input:- [2,1,2,3,4,5,1,3,6,2,3,4]
Output:-

Element 2 has come 3 times

Element 1 has come 2 times

Element 3 has come 2 times

Element 4 has come 2 times

Element 1 has come 1 times

Element 6 has come 1 times
Answer: from collections import Counter

def count_frequencies(lst):

 frequency = Counter(lst)

 for element, count in frequency.items():

 print(f"Element {element} has come {count} times")

lst = list(map(int, input("Enter numbers separated by spaces: ").split()))

count_frequencies(lst)
Output: Enter numbers separated by spaces: 4

Element 4 has come 1 times

Question 4:-
Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and perform the addition of Matrices A & B and Print the results.

Answer: import numpy as np

def add_matrices():

 # Define matrices A and B directly

 matrix_a = np.array([[1, 2], [3, 4]])

 matrix_b = np.array([[5, 6], [7, 8]])

 return matrix_a + matrix_b

matrix_sum = add_matrices()

print("Matrix A + Matrix B:")

print(matrix_sum)

Output: Matrix A + Matrix B:

[[6 8]

 [10 12]]

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator
Answer: class Fraction:

 def __init__(self, numerator, denominator):

 self.numerator = numerator

 self.denominator = denominator

 def __add__(self, other):

 new_numerator = (self.numerator * other.denominator) + (other.numerator * self.denominator)

 new_denominator = self.denominator * other.denominator

 return Fraction(new_numerator, new_denominator)

 def __str__(self):

 return f"{self.numerator}/{self.denominator}"

fraction1 = Fraction(1, 2)

fraction2 = Fraction(1, 3)

result = fraction1 + fraction2

print("Sum of fractions:", result)
Output: Sum of fractions: 5/6

