
Data Science and Gen AI LLMs
Name: Dr P Sumalatha (2406DGAL147)

Subject: Python Programming

Assignment Questions:
Question 1:

Number game between user and computer. The user starts by entering either 1
or 2 or 3 digits starting from 1 sequentially. The computer can return either 1 or
2 or 3 next digits in sequence, starting from the max number played by the user.
User enters the next 1 or 2 or 3 next digits in sequence, starting from the max
number played by the computer. Whoever reaches 20 first wins the game.

Note:

- the numbers should be in sequence starting from 1.

- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

Answer:

import random

def user_turn(current_number):

while True:

try:

user_input = input(f"Enter the next 1, 2, or 3 numbers in sequence
starting from {current_number + 1}: ")

user_numbers = list(map(int, user_input.split()))

if len(user_numbers) < 1 or len(user_numbers) > 3:

print("You must enter 1, 2, or 3 numbers.")

continue

if user_numbers[0] != current_number + 1 or user_numbers !=
list(range(current_number + 1, current_number + 1 + len(user_numbers))):

print("Numbers are not in sequence. Try again.")

continue

return user_numbers[-1]

except ValueError:

print("Invalid input. Enter numbers only.")

def computer_turn(current_number):

numbers_to_play = random.randint(1, 3)

computer_numbers = list(range(current_number + 1, current_number + 1 +
numbers_to_play))

print(f"Computer plays: {' '.join(map(str, computer_numbers))}")

return computer_numbers[-1]

def play_game():

current_number = 0

while current_number < 20:

current_number = user_turn(current_number)

if current_number >= 20:

print("Congratulations! You reached 20 and won the game!")

break

current_number = computer_turn(current_number)

if current_number >= 20:

print("Computer reached 20. You lose!")

break

Start the game

play_game()

OUTPUT:

Example 2:

import random

Function to check the winner

def check_winner(last_number, player_turn):

if last_number >= 20:

if player_turn:

return "Player Wins!"

else:

return "Computer Wins!"

return None

Function for player's turn

def player_turn_auto(current_number):

Player chooses the next 1, 2, or 3 sequential numbers

next_count = random.randint(1, 3)

player_input = [current_number + i for i in range(1, next_count + 1)]

return player_input

Function for computer's turn

def computer_turn(current_number):

next_count = random.randint(1, 3)

computer_input = [current_number + i for i in range(1, next_count + 1)]

return computer_input

Main game function

def number_game():

current_number = 0

player_turn_flag = True # True means it's player's turn, False means it's
computer's turn

while True:

if player_turn_flag:

player_input = player_turn_auto(current_number)

current_number = player_input[-1]

print(f"Player played: {player_input}")

else:

computer_input = computer_turn(current_number)

current_number = computer_input[-1]

print(f"Computer played: {computer_input}")

Check if the game is over

result = check_winner(current_number, player_turn_flag)

if result:

print(result)

break

Switch turn

player_turn_flag = not player_turn_flag

Start the game

number_game()

OUTPUT:

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct
object . use this function to print pascal triangle, where number of rows is the
input

Answer:

def ncr(n, r):

Compute the combination nCr = n! / (r! * (n - r)!)

if r > n:

return 0

num = 1

denom = 1

for i in range(r):

num *= (n - i)

denom *= (i + 1)

return num // denom

def print_pascals_triangle(rows):

for i in range(rows):

Print leading spaces for formatting

print(" " * (rows - i), end="")

for j in range(i + 1):

Print each element in the row

print(ncr(i, j), end=" ")

print() # Newline after each row

Input number of rows for Pascal's Triangle

rows = int(input("Enter the number of rows for Pascal's Triangle: "))

print_pascals_triangle(rows)

OUTPUT:

Enter the number of rows for Pascal's Triangle: 5

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Question 3:

Read a list of n numbers during runtime. Write a Python program to print the
repeated elements with frequency count in a list.

Answer:

from collections import Counter

Input number of elements in the list

n = int(input("Enter the number of elements in the list: "))

Input the list elements

elements = []

for _ in range(n):

num = int(input("Enter a number: "))

elements.append(num)

Count the frequency of each element

frequency = Counter(elements)

Print repeated elements with their frequency

print("\nRepeated elements with frequency count:")

for element, count in frequency.items():

if count > 1:

print(f"{element}: {count}")

OUTPUT:

Enter the number of elements in the list: 6

Enter a number: 3

Enter a number: 5

Enter a number: 2

Enter a number: 3

Enter a number: 2

Enter a number: 4

Repeated elements with frequency count:

3: 2

2: 2

OUTPUT:

4. Develop a python code to read matric A of order 2X2 and Matrix B of order
2X2 from a file and perform the addition of Matrices A & B and Print the results.

Answer:

def read_matrices_from_file(filename):

with open(filename, 'r') as file:

lines = file.readlines()

matrix_a = []

matrix_b = []

current_matrix = None

for line in lines:

line = line.strip()

if line == "A:":

current_matrix = matrix_a

continue

elif line == "B:":

current_matrix = matrix_b

continue

if current_matrix is not None:

Convert the line of numbers into a list of integers and add to the
current matrix

current_matrix.append(list(map(int, line.split())))

return matrix_a, matrix_b

def add_matrices(matrix_a, matrix_b):

Element-wise addition of two 2x2 matrices

return [

[matrix_a[i][j] + matrix_b[i][j] for j in range(2)]

for i in range(2)

]

def main():

filename = "matrices.txt"

matrix_a, matrix_b = read_matrices_from_file(filename)

print("Matrix A:")

for row in matrix_a:

print(row)

print("\nMatrix B:")

for row in matrix_b:

print(row)

Perform addition

result = add_matrices(matrix_a, matrix_b)

print("\nResult of A + B:")

for row in result:

print(row)

Run the main function

if __name__ == "__main__":

main()

INPUT: Matrices.txt

OUTPUT:

Matrix A:
[1, 2]
[3, 4]

Matrix B:
[5, 6]
[7, 8]

Result of A + B:
[6, 8]
[10, 12]

Program:

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the
class Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the
denominator

Answer:

class Fraction:

def __init__(self, numerator, denominator):

if denominator == 0:

raise ValueError("Denominator cannot be zero.")

self.numerator = numerator

self.denominator = denominator

def __add__(self, other):

if isinstance(other, Fraction):

Cross-multiply to find a common denominator

new_numerator = (self.numerator * other.denominator) +
(other.numerator * self.denominator)

new_denominator = self.denominator * other.denominator

return Fraction(new_numerator, new_denominator)

return NotImplemented

def __str__(self):

return f"{self.numerator}/{self.denominator}"

def simplify(self):

""" Simplify the fraction to its lowest terms """

from math import gcd

common_divisor = gcd(self.numerator, self.denominator)

self.numerator //= common_divisor

self.denominator //= common_divisor

Example usage

if __name__ == "__main__":

Creating two Fraction objects

fraction1 = Fraction(1, 4) # 1/2

fraction2 = Fraction(1, 6) # 1/3

Adding two fractions

result = fraction1 + fraction2

Simplifying the result

result.simplify()

Printing the result

print(f"{fraction1} + {fraction2} = {result}")

OUTPUT:

1/4 + 1/6 = 5/12

