import numpy as np
import random

Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits starting from 1 sequentially. The
computer can return either 1 or 2 or 3 next digits in sequence, starting from the max number played by the user. User enters the
next 1 or 2 or 3 next digits in sequence, starting from the max number played by the computer. Whoever reaches 20 first wins the
game. Note:

* the numbers should be in sequence starting from 1.

® minimum number user or computer should pick is at least 1 digit in sequence

* maximum number user or computer can pick only 3 digits in sequence Example 1: Player: 1 2 Computer played: [3, 4] Player: 5
6 7 Computer played: [8, 9] Player: 10 Computer played: [11, 12, 13] Player: 14 15 Computer played: [16, 17, 18] Player: 19 20
Player Wins!!!

Example 2: Player: 1 Computer played: [2, 3] Player: 4 5 Computer played: [6, 7, 8] Player: 9 10 Computer played: [11] Player: 12
Computer played: [13] Player: 14 15 Computer played: [16] Player: 17 18 Computer played: [19, 20] Computer Wins!!!

def number_game():
max_num = ©
goal = 20

print("Let's start the game! Reach 20 first to win.")

while max_num < goal:
User move
while True:
try:
user_input = input(f"Enter 1, 2, or 3 numbers in sequence, starting from {max_num + 1}: ")
user_numbers = list(map(int, user_input.split(',"')))

Validate user input (1 to 3 numbers, 1in correct sequence)
if len(user_numbers) in [1, 2, 3] and user_numbers == list(range(max_num + 1, max_num + 1 + len(user.
max_num = user_numbers[-1]

print(f"You played: {user_numbers}")
break
else:
print("Invalid input. Please enter a valid sequence of 1, 2, or 3 numbers.")
except ValueError:
print("Invalid input. Please enter numbers only.")

if max_num >= goal:
print("You reached 20! You win!")
break

Computer move

computer_choice = random.randint(1, 3)

computer_numbers = list(range(max_num + 1, max_num + 1 + computer_choice))
max_num = computer_numbers[-1]

print(f"Computer played: {computer_numbers}")

if max_num >= goal:
print("Computer reached 20! Computer wins!")
break

Start the game
number_game()

Let's start the game! Reach 20 first to win.
You played: [1, 2, 3]

Computer played: [4, 5]

You played: [6]

Computer played: [7]

You played: [8, 9]

Computer played: [10, 11]

Invalid input. Please enter a valid sequence of 1, 2, or 3 numbers.
You played: [12, 13, 14]

Computer played: [15]

You played: [16, 17]

Computer played: [18, 19, 20]

Computer reached 20! Computer wins!

Question 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this function to print pascal triangle,
where number of rows is the input

def pascals_triangle(rows):
def factorial(x):
result = 1
for i in range(2, x + 1):
result *= i
return result

def ncr(n, r):
return factorial(n) // (factorial(r) * factorial(n - r))

Generate Pascal's Triangle

for n in range(rows):
Print spaces for formatting
print(' ' * (rows - n), end="")

Print values for current row

for r in range(n + 1):
print(ncr(n, r), end=" ")

print() # Newline after each row

Example usage: input number of rows
num_rows = int(input("Enter the number of rows for Pascal's triangle: "))
pascals_triangle(num_rows)

1
11
121
1331
14641
15101651

Question 3:
Read a list of n numbers during runtime. Write a Python program to print the repeated elements with frequency count in a list.

Example :
Input:- [2,1,2,3,4,5,1,3,6,2,3,4]

Output:-

Element 2 has come 3 times
Element 1 has come 2 times
Element 3 has come 2 times
Element 4 has come 2 times
Element 1 has come 1 times
Element 6 has come 1 times

from collections import Counter

def find_repeated_elements():

Input the Llist size
n = input("Enter the number of elements in the list: ")

Input the List elements
print(f"Enter {n} numbers:")
numbers = list(map(int, n.split(',")))

Count the frequency of each element
frequency = Counter(numbers)

Filter and print elements that are repeated
#print("\nRepeated elements with frequency count:")
for element, count in frequency.items():
if count >= 1:
print(f"Element {element} has come {count} times")

Example usage
find_repeated_elements()

Enter 2,1,2,3,4,5,1,3,6,2,3,4 numbers:

Element 2 has come 3 times
Element 1 has come 2 times
Element 3 has come 3 times
Element 4 has come 2 times
Element 5 has come 1 times
Element 6 has come 1 times

Question 4:-

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and perform the addition of Matrices A
& B and Print the results.

def read_matrices_from_file(filename):
with open(filename, 'r') as file:
Read all Llines from the file
lines = file.readlines()

Read matrix A (first two Lines)
A = [[int(num) for num in lines[@].split()],
[int(num) for num in lines[1].split()]]

Read matrix B (next two Lines)
B = [[int(num) for num in lines[2].split()],
[int(num) for num in lines[3].split()]]

return A, B

def add_matrices(A, B):
Adding corresponding elements of matrix A and matrix B
result = [[A[i][j] + B[i][j] for j in range(2)] for i in range(2)]
return result

def print_matrix(matrix, label):
print(f"{label}:")
for row in matrix:
print(row)

Example usage
filename = "matrix.txt" # The file should contain 4 lines representing the 2x2 matrices A and B
A, B = read_matrices_from_file(filename)

Perform the matrix addition
result = add_matrices(A, B)

Print the matrices and result
print_matrix(A, "Matrix A")

print_matrix(B, "Matrix B")
print_matrix(result, "Result (A + B)")

Matrix A:

[1, 2]

[3, 4]

Matrix B:

[5, 6]

[7, 8]

Result (A + B):
[6, 8]

[10, 12]

Question 5:-

Write a program that overloads the + operator so that it can add two objects of the class Fraction. Fraction can be considered of

the for P/Q where P is the numerator and Q is the denominator

import math

class Fraction:
def __init__ (self, numerator, denominator):
if denominator == 0:
raise ValueError("Denominator cannot be zero")
self.numerator = numerator
self.denominator = denominator

def __add__(self, other):
Add two fractions using the formula: (P1 * Q2 + P2 * Q1) / (Q1 * Q2)
new_numerator = (self.numerator * other.denominator) + (other.numerator * self.denominator)

new_denominator = self.denominator * other.denominator

Simplify the result using the GCD
gcd = math.gcd(new_numerator, new_denominator)
return Fraction(new_numerator // gcd, new_denominator // gcd)

def _ str_ (self):
return f"{self.numerator}/{self.denominator}"

Example usage
fractionl = Fraction(1, 2) # 1/2
fraction2 = Fraction(1, 3) # 1/3

result = fractionl + fraction2 # Add fractions
print(f"Result of addition: {result}") # Output: 5/6

Result of addition: 5/6

