
Question – 1: 

To analyze network packets associated with a specific IP address using Scapy in Python, you 

can use the following code snippet as a starting point. This script will capture packets and filter 

them based on the provided IP address: 

 

Python 

 

from scapy.all import sniff, IP 

 

# Replace '1.2.3.4' with the suspicious IP address you want to analyze 

suspicious_ip = '1.2.3.4' 

 

# Define the packet processing function 

def process_packet(packet): 

    if IP in packet and packet[IP].src == suspicious_ip: 

        # Implement your logic for packet analysis here 

        print(f'Suspicious packet detected: {packet.summary()}') 

 

# Start sniffing the network 

sniff(filter=f'ip src {suspicious_ip}', prn=process_packet) 

Make sure to replace '1.2.3.4' with the actual suspicious IP address. This script will print a 

summary of each packet that originates from the specified IP address. You can expand the 

process_packet function to include more sophisticated analysis, such as inspecting the payload, 

analyzing protocols, or even saving the packet 

1. Utilizing Scapy for Packet Capture and Analysis 



Scapy is a powerful Python-based interactive packet manipulation program and library. It can be 

used to capture, dissect, and analyze network packets. It allows users to construct their own 

packets, which can be useful for testing networks. 

 

2. Steps for Capturing and Analyzing Network Traffic with Scapy 

Step 1: Import Scapy First, you need to import Scapy’s functionalities into your Python script: 

 

Python 

 

from scapy.all import * 

AI-generated code. Review and use carefully. More info on FAQ. 

Step 2: Define Packet Processing Function Create a function that will be 

called for each captured packet. This function can dissect and display 

packet information: 

 

Python 

 

def process_packet(packet): 

    packet.show() 

AI-generated code. Review and use carefully. More info on FAQ. 

Step 3: Capture Packets Use Scapy’s sniff() function to capture packets. You 

can specify filters and the number of packets to capture: 

 

Python 

 

sniff(prn=process_packet, filter="ip", count=1 



Step 4: Analyze Packets The process_packet function will be called for each packet. You can 

modify this function to look for specific attributes, such as IP addresses or TCP flags. 

 

3. Identifying Suspicious Behavior 

Suspicious or anomalous behavior in network packets can include unusual traffic patterns, 

unexpected protocols, or known malicious signatures. For example, a large number of packets 

sent to a specific port could indicate a port scanning attack. 

 

4. Mitigating Security Risks 

To mitigate risks identified through packet analysis, consider the following recommendations: 

 

Implement Firewalls: Use firewalls to block unwanted traffic and control what traffic is allowed in 

and out of the network. 

Intrusion Detection Systems (IDS): Deploy IDS to monitor network traffic for suspicious activity 

and known threats. 

Regular Updates: Keep all systems and security devices updated with the latest security 

patches. 

Traffic Monitoring: Continuously monitor network traffic for anomalies and keep logs for future 

analysis. 

User Education: Educate users about security best practices to prevent social engineering 

attacks. 

Question – 2: 

To develop a phishing website detection system in Python, you can use machine learning 

techniques to analyze website characteristics. Here’s a high-level approach to creating such a 

system: 

 

Data Collection: Gather a dataset containing URLs of both phishing and legitimate websites. 

You can find such datasets online or use APIs that provide this information. 

Feature Extraction: Identify and extract features from the URLs that are commonly associated 

with phishing sites. Features may include the presence of IP addresses, use of HTTPS, URL 

length, domain age, and abnormal URL structures. 



Data Preprocessing: Clean and preprocess the data to convert it into a format suitable for 

machine learning models. This may involve encoding categorical variables, handling missing 

values, and normalizing numerical features. 

Model Training: Choose a machine learning algorithm (like Decision Trees, Random Forest, or 

Neural Networks) and train it on your preprocessed dataset. Use cross-validation to evaluate 

the model’s performance. 

Evaluation: Test the model on a separate validation set to assess its accuracy and ability to 

generalize to unseen data. 

Deployment: Integrate the trained model into a Python application that can take a URL as input 

and output the likelihood of it being a phishing site. 

Here’s a simplified example of how you might implement a basic version of such a system: 

 

Python 

 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

# Load your dataset 

data = pd.read_csv('phishing_sites_data.csv') 

 

# Define your features and labels 

X = data.drop('label', axis=1)  # Features 

y = data['label']               # Labels 

 

# Split the data into training and testing sets 



X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Initialize the model 

model = RandomForestClassifier() 

 

# Train the model 

model.fit(X_train, y_train) 

 

# Make predictions 

predictions = model.predict(X_test) 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, predictions) 

print(f"Model Accuracy: {accuracy}") 

 

# Function to predict new URLs 

def predict_phishing(url): 

    # Extract features from the URL 

    features = extract_features(url) 

     

    # Predict using the trained model 

    prediction = model.predict([features]) 

     



    # Return the prediction 

    return "Phishing" if prediction == 1 else "Legitimate" 

 

# Example usage 

url_to_check = "http://example_phishing_site.com" 

print(predict_phishing(url_to_check)) 

In this example, extract_features is a hypothetical function you would create to extract features 

from a given URL. The dataset phishing_sites_data.csv should contain your collected data with 

labeled examples of phishing and legitimate sites. 

 

Remember, this is a simplified example. A real-world system would require a more robust 

feature extraction process, a carefully curated dataset, and thorough testing and validation to 

ensure accuracy and reliability. Additionally, always ensure that you have the proper 

authorization to use the data for training and that you comply with privacy laws and regulations. 

To analyze two websites and identify which one might be a phishing site, we would typically look 

at various characteristics such as the URL structure, the presence of SSL certificates, the 

content on the page, and any input forms that request sensitive information. However, as an AI 

developed by OpenAI, I don’t have the capability to directly interact with or analyze live 

websites. 

 

Instead, I can guide you through the process of how such an analysis could be conducted: 

 

Examine the URL: Phishing URLs may contain subtle misspellings of legitimate websites or use 

a misleading domain to trick users. 

Check for HTTPS: Legitimate sites often use HTTPS to secure connections, while phishing sites 

may not. 

Inspect the Content: Look for poor grammar, spelling mistakes, and low-quality images, which 

can be indicators of phishing sites. 

Look for Trust Seals: Legitimate sites may display security seals from known internet security 

companies. 



Check Domain Age: Phishing sites often have new domain names, while legitimate sites usually 

have been around for a longer time. 

Verify Contact Information: Legitimate sites provide valid contact details, while phishing sites 

often do not. 

Use Online Tools: There are various online services that can analyze websites to determine if 

they are likely to be phishing sites. 

If you have two specific URLs you’d like to analyze, you can use online tools like Google’s Safe 

Browsing Transparency Report, PhishTank, or VirusTotal to check the reputation of the 

websites. These tools can provide insights into whether a website is considered safe or 

potentially malicious. 

 

Remember, never enter personal information into a website unless you are certain it is 

legitimate, and always ensure your computer’s security software is up to date to help protect 

against phishing and other online threats. If you suspect a site is a phishing attempt, it’s best to 

avoid it and report it to the appropriate authorities. 

Detecting phishing websites is a critical task for ensuring online security, and Python is a 

powerful tool for building a detection system. Here’s a high-level overview of how you might 

approach this with Python: 

 

Data Collection: Gather a dataset of URLs classified as phishing or legitimate. This dataset 

should include various features such as URL length, use of IP addresses, the presence of “@” 

symbols, etc. 

Feature Extraction: Analyze the URLs to extract meaningful features that can help in 

distinguishing between phishing and legitimate sites. Common features include the URL’s 

length, the number of dots, presence of HTTPS, etc. 

Model Training: Use machine learning algorithms to train a model on your dataset. Decision 

trees, random forests, and neural networks are popular choices for classification tasks. 

Evaluation: Assess the model’s performance using metrics like accuracy, precision, recall, and 

F1 score. It’s important to also check for false positives and false negatives. 

Deployment: Integrate the model into a web application or browser extension to analyze and 

flag phishing URLs in real-time. 

Here’s a simple example of a Python function that could be part of a larger phishing detection 

system: 

 



Python 

 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import classification_report 

 

# Load dataset 

data = pd.read_csv('dataset.csv') 

 

# Feature extraction 

# (Assuming 'data' has the necessary columns for features and labels) 

X = data.drop('label', axis=1) 

y = data['label'] 

 

# Split dataset 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Train model 

model = RandomForestClassifier() 

model.fit(X_train, y_train) 

 



# Predictions 

predictions = model.predict(X_test) 

 

# Evaluation 

print(classification_report(y_test, predictions)) 

This code is a basic template and would need to be adapted to the specific 

features and dataset you’re working with. 


