
                                Unit II Fundamentals of Algorithms in Cybersecurity 

                                                Assignment 

Q1. Explain Data Encryption Standard (DES) and 

Rivest-Shamir-Adleman (RSA) Algorithms. 

Data Encryption Standard (DES) 

The Data Encryption Standard (DES) is a symmetric key algorithm used for the 
encryption of electronic data. It was once the standard encryption technique for 
many applications and was widely adopted across the globe. DES was developed in 
the 1970s by IBM and was later adopted by the National Institute of Standards and 
Technology (NIST) in the United States as a federal information processing 
standard. 

Key Characteristics of DES: 

• Block Cipher: DES works by encrypting data in fixed-size blocks, typically 64 
bits in length. 

• Symmetric Key: It uses the same secret key for both encryption and 
decryption. The key length for DES is 56 bits. 

• Feistel Network: DES is based on a Feistel network structure, which divides 
the data block into two halves and applies a series of substitution and 
permutation operations. 

• Round Function: It consists of 16 rounds of the same function applied to the 
data block, using a different 48-bit subkey derived from the original 56-bit key 
for each round. 

Data Encryption Standard (DES) is a block cipher with a 56-bit key length that has 

played a significant role in data security. Data encryption standard (DES) has been 

found vulnerable to very powerful attacks therefore, the popularity of DES has been 

found slightly on the decline. DES is a block cipher and encrypts data in blocks of 

size of 64 bits each, which means 64 bits of plain text go as the input to DES, 

which produces 64 bits of cipher text. The same algorithm and key are used for 

encryption and decryption, with minor differences. The key length is 56 bits.  

We have mentioned that DES uses a 56-bit key. Actually, The initial key consists of 

64 bits. However, before the DES process even starts, every 8th bit of the key is 

discarded to produce a 56-bit key. That is bit positions 8, 16, 24, 32, 40, 48, 56, 

and 64 are discarded.  

 

Thus, the discarding of every 8th bit of the key produces a 56-bit key from the 
original 64-bit key. 
DES is based on the two fundamental attributes of cryptography: substitution (also 
called confusion) and transposition (also called diffusion). DES consists 
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of 16 steps, each of which is called a round. Each round performs the steps of 
substitution and transposition. Let us now discuss the broad-level steps in DES.  
• In the first step, the 64-bit plain text block is handed over to an 

initial Permutation (IP) function. 
• The initial permutation is performed on plain text. 
• Next, the initial permutation (IP) produces two halves of the permuted block; 

saying Left Plain Text (LPT) and Right Plain Text (RPT). 
• Now each LPT and RPT go through 16 rounds of the encryption process. 
• In the end, LPT and RPT are rejoined and a Final Permutation (FP) is performed 

on the combined block 
• The result of this process produces 64-bit cipher text. 

 
Initial Permutation (IP) 
As we have noted, the initial permutation (IP) happens only once and it happens before 
the first round. It suggests how the transposition in IP should proceed, as shown in the 
figure. For example, it says that the IP replaces the first bit of the original plain text 
block with the 58th bit of the original plain text, the second bit with the 50th bit of the 
original plain text block, and so on. 
This is nothing but  jugglery of bit positions of the original plain text block. the same 
rule applies to all the other bit positions shown in the figure. 

 

As we have noted after IP is done, the resulting 64-bit permuted text block is divided 
into two half blocks. Each half-block consists of 32 bits, and each of the 16 rounds, in 
turn, consists of the broad-level steps outlined in the figure.  
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Step 1: Key transformation 
We have noted initial 64-bit key is transformed into a 56-bit key by discarding every 
8th bit of the initial key. Thus, for each a 56-bit key is available. From this 56-bit key, 
a different 48-bit Sub Key is generated during each round using a process called key 
transformation. For this, the 56-bit key is divided into two halves, each of 28 bits. These 
halves are circularly shifted left by one or two positions, depending on the round. 
For example: if the round numbers 1, 2, 9, or 16 the shift is done by only one position 
for other rounds, the circular shift is done by two positions. The number of key bits 
shifted per round is shown in the figure. 

 

After an appropriate shift, 48 of the 56 bits are selected. From the 48 we might obtain 
64 or 56 bits based on requirement which helps us to recognize that this model is very 
versatile and can handle any range of requirements needed or provided. for selecting 
48 of the 56 bits the table is shown in the figure given below. For instance, after the 
shift, bit number 14 moves to the first position, bit number 17 moves to the second 
position, and so on. If we observe the table, we will realize that it contains only 48-bit 
positions. Bit number 18 is discarded (we will not find it in the table), like 7 others, to 
reduce a 56-bit key to a 48-bit key. Since the key transformation process involves 
permutation as well as a selection of a 48-bit subset of the original 56-bit key it is called 
Compression Permutation. 



 

Because of this compression permutation technique, a different subset of key bits is 
used in each round. That makes DES not easy to crack. 
Step 2: Expansion Permutation 
Recall that after the initial permutation, we had two 32-bit plain text areas called Left 
Plain Text (LPT) and Right Plain Text (RPT). During the expansion permutation, the 
RPT is expanded from 32 bits to 48 bits. Bits are permuted as well hence called 
expansion permutation. This happens as the 32-bit RPT is divided into 8 blocks, with 
each block consisting of 4 bits. Then, each 4-bit block of the previous step is then 
expanded to a corresponding 6-bit block, i.e., per 4-bit block, 2 more bits are added.  

 

This process results in expansion as well as a permutation of the input bit while 
creating output. The key transformation process compresses the 56-bit key to 48 bits. 
Then the expansion permutation process expands the 32-bit RPT to 48-bits. Now the 
48-bit key is XOR with 48-bit RPT and the resulting output is given to the next step, 
which is the S-Box substitution. 

 

Python code for the encryption and decryption in des algorithm: 
Hexadecimal to binary conversion 
def hex2bin(s): 
    mp = {'0': "0000", 
          '1': "0001", 
          '2': "0010", 
          '3': "0011", 
          '4': "0100", 
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          '5': "0101", 
          '6': "0110", 
          '7': "0111", 
          '8': "1000", 
          '9': "1001", 
          'A': "1010", 
          'B': "1011", 
          'C': "1100", 
          'D': "1101", 
          'E': "1110", 
          'F': "1111"} 
    bin = "" 
    for i in range(len(s)): 
        bin = bin + mp[s[i]] 
    return bin 
  
# Binary to hexadecimal conversion 
  
  
def bin2hex(s): 
    mp = {"0000": '0', 
          "0001": '1', 
          "0010": '2', 
          "0011": '3', 
          "0100": '4', 
          "0101": '5', 
          "0110": '6', 
          "0111": '7', 
          "1000": '8', 
          "1001": '9', 
          "1010": 'A', 
          "1011": 'B', 
          "1100": 'C', 
          "1101": 'D', 
          "1110": 'E', 
          "1111": 'F'} 
    hex = "" 
    for i in range(0, len(s), 4): 
        ch = "" 
        ch = ch + s[i] 
        ch = ch + s[i + 1] 
        ch = ch + s[i + 2] 
        ch = ch + s[i + 3] 
        hex = hex + mp[ch] 
  
    return hex 
  
# Binary to decimal conversion 
  
  



def bin2dec(binary): 
  
    binary1 = binary 
    decimal, i, n = 0, 0, 0 
    while(binary != 0): 
        dec = binary % 10 
        decimal = decimal + dec * pow(2, i) 
        binary = binary//10 
        i += 1 
    return decimal 
  
# Decimal to binary conversion 
  
  
def dec2bin(num): 
    res = bin(num).replace("0b", "") 
    if(len(res) % 4 != 0): 
        div = len(res) / 4 
        div = int(div) 
        counter = (4 * (div + 1)) - len(res) 
        for i in range(0, counter): 
            res = '0' + res 
    return res 
  
# Permute function to rearrange the bits 
  
  
def permute(k, arr, n): 
    permutation = "" 
    for i in range(0, n): 
        permutation = permutation + k[arr[i] - 1] 
    return permutation 
  
# shifting the bits towards left by nth shifts 
  
  
def shift_left(k, nth_shifts): 
    s = "" 
    for i in range(nth_shifts): 
        for j in range(1, len(k)): 
            s = s + k[j] 
        s = s + k[0] 
        k = s 
        s = "" 
    return k 
  
# calculating xow of two strings of binary number a and b 
  
  
def xor(a, b): 



    ans = "" 
    for i in range(len(a)): 
        if a[i] == b[i]: 
            ans = ans + "0" 
        else: 
            ans = ans + "1" 
    return ans 
  
  
# Table of Position of 64 bits at initial level: Initial Permutation Table 
initial_perm = [58, 50, 42, 34, 26, 18, 10, 2, 
                60, 52, 44, 36, 28, 20, 12, 4, 
                62, 54, 46, 38, 30, 22, 14, 6, 
                64, 56, 48, 40, 32, 24, 16, 8, 
                57, 49, 41, 33, 25, 17, 9, 1, 
                59, 51, 43, 35, 27, 19, 11, 3, 
                61, 53, 45, 37, 29, 21, 13, 5, 
                63, 55, 47, 39, 31, 23, 15, 7] 
  
# Expansion D-box Table 
exp_d = [32, 1, 2, 3, 4, 5, 4, 5, 
         6, 7, 8, 9, 8, 9, 10, 11, 
         12, 13, 12, 13, 14, 15, 16, 17, 
         16, 17, 18, 19, 20, 21, 20, 21, 
         22, 23, 24, 25, 24, 25, 26, 27, 
         28, 29, 28, 29, 30, 31, 32, 1] 
  
# Straight Permutation Table 
per = [16,  7, 20, 21, 
       29, 12, 28, 17, 
       1, 15, 23, 26, 
       5, 18, 31, 10, 
       2,  8, 24, 14, 
       32, 27,  3,  9, 
       19, 13, 30,  6, 
       22, 11,  4, 25] 
  
# S-box Table 
sbox = [[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7], 
         [0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8], 
         [4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0], 
         [15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13]], 
  
        [[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10], 
         [3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5], 
         [0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15], 
         [13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9]], 
  
        [[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8], 
         [13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1], 



         [13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7], 
         [1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12]], 
  
        [[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15], 
         [13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9], 
         [10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4], 
         [3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14]], 
  
        [[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9], 
         [14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6], 
         [4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14], 
         [11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3]], 
  
        [[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11], 
         [10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8], 
         [9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6], 
         [4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13]], 
  
        [[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1], 
         [13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6], 
         [1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2], 
         [6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12]], 
  
        [[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7], 
         [1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2], 
         [7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8], 
         [2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11]]] 
  
# Final Permutation Table 
final_perm = [40, 8, 48, 16, 56, 24, 64, 32, 
              39, 7, 47, 15, 55, 23, 63, 31, 
              38, 6, 46, 14, 54, 22, 62, 30, 
              37, 5, 45, 13, 53, 21, 61, 29, 
              36, 4, 44, 12, 52, 20, 60, 28, 
              35, 3, 43, 11, 51, 19, 59, 27, 
              34, 2, 42, 10, 50, 18, 58, 26, 
              33, 1, 41, 9, 49, 17, 57, 25] 
  
  
def encrypt(pt, rkb, rk): 
    pt = hex2bin(pt) 
  
    # Initial Permutation 
    pt = permute(pt, initial_perm, 64) 
    print("After initial permutation", bin2hex(pt)) 
  
    # Splitting 
    left = pt[0:32] 
    right = pt[32:64] 
    for i in range(0, 16): 



        #  Expansion D-box: Expanding the 32 bits data into 48 bits 
        right_expanded = permute(right, exp_d, 48) 
  
        # XOR RoundKey[i] and right_expanded 
        xor_x = xor(right_expanded, rkb[i]) 
  
        # S-boxex: substituting the value from s-box table by calculating row and 
column 
        sbox_str = "" 
        for j in range(0, 8): 
            row = bin2dec(int(xor_x[j * 6] + xor_x[j * 6 + 5])) 
            col = bin2dec( 
                int(xor_x[j * 6 + 1] + xor_x[j * 6 + 2] + xor_x[j * 6 + 3] + xor_x[j * 6 + 4])) 
            val = sbox[j][row][col] 
            sbox_str = sbox_str + dec2bin(val) 
  
        # Straight D-box: After substituting rearranging the bits 
        sbox_str = permute(sbox_str, per, 32) 
  
        # XOR left and sbox_str 
        result = xor(left, sbox_str) 
        left = result 
  
        # Swapper 
        if(i != 15): 
            left, right = right, left 
        print("Round ", i + 1, " ", bin2hex(left), 
              " ", bin2hex(right), " ", rk[i]) 
  
    # Combination 
    combine = left + right 
  
    # Final permutation: final rearranging of bits to get cipher text 
    cipher_text = permute(combine, final_perm, 64) 
    return cipher_text 
  
  
pt = "123456ABCD132536" 
key = "AABB09182736CCDD" 
  
# Key generation 
# --hex to binary 
key = hex2bin(key) 
  
# --parity bit drop table 
keyp = [57, 49, 41, 33, 25, 17, 9, 
        1, 58, 50, 42, 34, 26, 18, 
        10, 2, 59, 51, 43, 35, 27, 
        19, 11, 3, 60, 52, 44, 36, 
        63, 55, 47, 39, 31, 23, 15, 



        7, 62, 54, 46, 38, 30, 22, 
        14, 6, 61, 53, 45, 37, 29, 
        21, 13, 5, 28, 20, 12, 4] 
  
# getting 56 bit key from 64 bit using the parity bits 
key = permute(key, keyp, 56) 
  
# Number of bit shifts 
shift_table = [1, 1, 2, 2, 
               2, 2, 2, 2, 
               1, 2, 2, 2, 
               2, 2, 2, 1] 
  
# Key- Compression Table : Compression of key from 56 bits to 48 bits 
key_comp = [14, 17, 11, 24, 1, 5, 
            3, 28, 15, 6, 21, 10, 
            23, 19, 12, 4, 26, 8, 
            16, 7, 27, 20, 13, 2, 
            41, 52, 31, 37, 47, 55, 
            30, 40, 51, 45, 33, 48, 
            44, 49, 39, 56, 34, 53, 
            46, 42, 50, 36, 29, 32] 
  
# Splitting 
left = key[0:28]    # rkb for RoundKeys in binary 
right = key[28:56]  # rk for RoundKeys in hexadecimal 
  
rkb = [] 
rk = [] 
for i in range(0, 16): 
    # Shifting the bits by nth shifts by checking from shift table 
    left = shift_left(left, shift_table[i]) 
    right = shift_left(right, shift_table[i]) 
  
    # Combination of left and right string 
    combine_str = left + right 
  
    # Compression of key from 56 to 48 bits 
    round_key = permute(combine_str, key_comp, 48) 
  
    rkb.append(round_key) 
    rk.append(bin2hex(round_key)) 
  
print("Encryption") 
cipher_text = bin2hex(encrypt(pt, rkb, rk)) 
print("Cipher Text : ", cipher_text) 
  
print("Decryption") 
rkb_rev = rkb[::-1] 
rk_rev = rk[::-1] 



text = bin2hex(encrypt(cipher_text, rkb_rev, rk_rev)) 
print("Plain Text : ", text) 
Output: 
PS C:\Users\Sashu Akshu> & "C:/Program Files/Python312/python.exe" 
"c:/Users/Sashu Akshu/Desktop/myproject/myproject/sample.py" 
Encryption 
After initial permutation 14A7D67818CA18AD 
Round 1   18CA18AD   5A78E394   194CD072DE8C 
Round 2   5A78E394   4A1210F6   4568581ABCCE 
Round 3   4A1210F6   B8089591   06EDA4ACF5B5 
Round 4   B8089591   236779C2   DA2D032B6EE3 
Round 5   236779C2   A15A4B87   69A629FEC913 
Round 6   A15A4B87   2E8F9C65   C1948E87475E 
Round 7   2E8F9C65   A9FC20A3   708AD2DDB3C0 
Round 8   A9FC20A3   308BEE97   34F822F0C66D 
Round 9   308BEE97   10AF9D37   84BB4473DCCC 
Round 10   10AF9D37   6CA6CB20   02765708B5BF 
Round 11   6CA6CB20   FF3C485F   6D5560AF7CA5 
Round 12   FF3C485F   22A5963B   C2C1E96A4BF3 
Round 13   22A5963B   387CCDAA   99C31397C91F 
Round 14   387CCDAA   BD2DD2AB   251B8BC717D0 
Round 15   BD2DD2AB   CF26B472   3330C5D9A36D 
Round 16   19BA9212   CF26B472   181C5D75C66D 
Cipher Text:  C0B7A8D05F3A829C 
Decryption 
After initial permutation 19BA9212CF26B472 
Round 1   CF26B472   BD2DD2AB   181C5D75C66D 
Round 2   BD2DD2AB   387CCDAA   3330C5D9A36D 
Round 3   387CCDAA   22A5963B   251B8BC717D0 
Round 4   22A5963B   FF3C485F   99C31397C91F 
Round 5   FF3C485F   6CA6CB20   C2C1E96A4BF3 
Round 6   6CA6CB20   10AF9D37   6D5560AF7CA5 
Round 7   10AF9D37   308BEE97   02765708B5BF 
Round 8   308BEE97   A9FC20A3   84BB4473DCCC 
Round 9   A9FC20A3   2E8F9C65   34F822F0C66D 
Round 10   2E8F9C65   A15A4B87   708AD2DDB3C0 
Round 11   A15A4B87   236779C2   C1948E87475E 
Round 12   236779C2   B8089591   69A629FEC913 
Round 13   B8089591   4A1210F6   DA2D032B6EE3 
Round 14   4A1210F6   5A78E394   06EDA4ACF5B5 
Round 15   5A78E394   18CA18AD   4568581ABCCE 
Round 16   14A7D678   18CA18AD   194CD072DE8C 
Plain Text:  123456ABCD132536 
 
In conclusion, the Data Encryption Standard (DES) is a block cipher with a 56-bit key 
length that has played a significant role in data security. However, due to 
vulnerabilities, its popularity has declined. DES operates through a series of rounds 
involving key transformation, expansion permutation, and substitution, ultimately 
producing cipher text from plaintext. While DES has historical significance, it’s crucial 
to consider more secure encryption alternatives for modern data protection needs. 
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Rivest-Shamir-Adleman (RSA) Algorithm 

RSA is a public-key (or asymmetric) cryptosystem that is widely used for secure data 
transmission. It was invented in 1977 by Ron Rivest, Adi Shamir, and Leonard 
Adleman of the Massachusetts Institute of Technology. RSA's security is based on 
the difficulty of factoring large composite numbers. 

Key Characteristics of RSA: 

• Public Key Encryption: RSA allows two parties to communicate securely 
without having to share a secret key. Each party has a pair of keys: a public 
key (used for encryption) and a private key (used for decryption). 

• Asymmetric Cryptography: It uses different keys for encryption and 
decryption. The encryption key is public, and the decryption key is private. 

• Mathematical Security: RSA's security is based on the fact that it is very 
difficult to factor the product of two large prime numbers, a problem that is 
considered computationally infeasible for large keys. 

• Key Generation: RSA keys are generated by choosing two large prime 
numbers, multiplying them to form a composite number, and then calculating 
the totient of this number to create the keys. 

RSA algorithm is an asymmetric cryptography algorithm. Asymmetric actually 
means that it works on two different keys i.e. Public Key and Private Key. As the 
name describes that the Public Key is given to everyone and the Private Key is kept 
private. 
An example of asymmetric cryptography:  
1. A client (for example browser) sends its public key to the server and requests 

some data. 
2. The server encrypts the data using the client’s public key and sends the 

encrypted data. 
3. The client receives this data and decrypts it. 
Since this is asymmetric, nobody else except the browser can decrypt the data even 
if a third party has the public key of the browser. 
The idea! The idea of RSA is based on the fact that it is difficult to factorize a large 
integer. The public key consists of two numbers where one number is a multiplication 
of two large prime numbers. And private key is also derived from the same two prime 
numbers. So if somebody can factorize the large number, the private key is 
compromised. Therefore encryption strength totally lies on the key size and if we 
double or triple the key size, the strength of encryption increases exponentially. RSA 
keys can be typically 1024 or 2048 bits long, but experts believe that 1024-bit keys 
could be broken in the near future. But till now it seems to be an infeasible task. 
Let us learn the mechanism behind the RSA algorithm : >> Generating Public 
Key:  
Select two prime no's. Suppose P = 53 and Q = 59. 
Now First part of the Public key  : n = P*Q = 3127. 
 We also need a small exponent say e :  
But e Must be  
An integer. 
Not be a factor of Φ(n).  
1 < e < Φ(n) [Φ(n) is discussed below],  
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Let us now consider it to be equal to 3. 
    Our Public Key is made of n and e 
 
>> Generating Private Key:  
We need to calculate Φ(n) : 
Such that Φ(n) = (P-1)(Q-1)      
      so,  Φ(n) = 3016 
    Now calculate Private Key, d :  
d = (k*Φ(n) + 1) / e for some integer k 
For k = 2, value of d is 2011. 
 
Now we are ready with our – Public Key ( n = 3127 and e = 3) and Private Key(d = 
2011) Now we will encrypt “HI”: 
Convert letters to numbers : H  = 8 and I = 9 
    Thus Encrypted Data c = (89e)mod n  
Thus our Encrypted Data comes out to be 1394 
Now we will decrypt 1394 :  
    Decrypted Data = (cd)mod n 
Thus our Encrypted Data comes out to be 89 
8 = H and I = 9 i.e. "HI". 

The implementation of the RSA algorithm for Encrypting and 
decrypting using python 
import random 
import math 
  
# A set will be the collection of prime numbers, 
# where we can select random primes p and q 
prime = set() 
  
public_key = None 
private_key = None 
n = None 
  
# We will run the function only once to fill the set of 
# prime numbers 
def primefiller(): 
    # Method used to fill the primes set is Sieve of 
    # Eratosthenes (a method to collect prime numbers) 
    seive = [True] * 250 
    seive[0] = False 
    seive[1] = False 
    for i in range(2, 250): 
        for j in range(i * 2, 250, i): 
            seive[j] = False 
  
    # Filling the prime numbers 
    for i in range(len(seive)): 
        if seive[i]: 
            prime.add(i) 
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# Picking a random prime number and erasing that prime 
# number from list because p!=q 
def pickrandomprime(): 
    global prime 
    k = random.randint(0, len(prime) - 1) 
    it = iter(prime) 
    for _ in range(k): 
        next(it) 
  
    ret = next(it) 
    prime.remove(ret) 
    return ret 
  
  
def setkeys(): 
    global public_key, private_key, n 
    prime1 = pickrandomprime()  # First prime number 
    prime2 = pickrandomprime()  # Second prime number 
  
    n = prime1 * prime2 
    fi = (prime1 - 1) * (prime2 - 1) 
  
    e = 2 
    while True: 
        if math.gcd(e, fi) == 1: 
            break 
        e += 1 
  
    # d = (k*Φ(n) + 1) / e for some integer k 
    public_key = e 
  
    d = 2 
    while True: 
        if (d * e) % fi == 1: 
            break 
        d += 1 
  
    private_key = d 
  
  
# To encrypt the given number 
def encrypt(message): 
    global public_key, n 
    e = public_key 
    encrypted_text = 1 
    while e > 0: 
        encrypted_text *= message 
        encrypted_text %= n 
        e -= 1 



    return encrypted_text 
  
  
# To decrypt the given number 
def decrypt(encrypted_text): 
    global private_key, n 
    d = private_key 
    decrypted = 1 
    while d > 0: 
        decrypted *= encrypted_text 
        decrypted %= n 
        d -= 1 
    return decrypted 
  
  
# First converting each character to its ASCII value and 
# then encoding it then decoding the number to get the 
# ASCII and converting it to character 
def encoder(message): 
    encoded = [] 
    # Calling the encrypting function in encoding function 
    for letter in message: 
        encoded.append(encrypt(ord(letter))) 
    return encoded 
  
  
def decoder(encoded): 
    s = '' 
    # Calling the decrypting function decoding function 
    for num in encoded: 
        s += chr(decrypt(num)) 
    return s 
  
  
if __name__ == '__main__': 
    primefiller() 
    setkeys() 
    message = "jntu sessions" 
    # Uncomment below for manual input 
    # message = input("Enter the message\n") 
    # Calling the encoding function 
    coded = encoder(message) 
  
    print("Initial message:") 
    print(message) 
    print("\n\nThe encoded message(encrypted by public key)\n") 
    print(''.join(str(p) for p in coded)) 
    print("\n\nThe decoded message(decrypted by public key)\n") 
    print(''.join(str(p) for p in decoder(coded))) 
      



 Output: 
 
  S C:\Users\Sashu Akshu> & "C:/Program Files/Python312/python.exe" 
"c:/Users/Sashu Akshu/Desktop/myproject/myproject/rsa algorithm.py" 
Initial message: 
jntu sessions 
 
 
The encoded message(encrypted by public key) 
 
244381591624877148101456372647857264726490610251159167264 
 
 
The decoded message(decrypted by public key) 
 
jntu sessions 
 

Q2. Explain Diffie-Hellman Key Exchange Algorithm 
with an Example 

The Diffie–Hellman (DH) Algorithm is a key-exchange protocol that enables two 
parties communicating over public channel to establish a mutual secret without it 
being transmitted over the Internet. DH enables the two to use a public key to 
encrypt and decrypt their conversation or data using symmetric cryptography. 

Diffie and Hellman wanted to make Transport Layer Security (TLS), a secure way of 
computers communicating, more safe to perform. For example, while you can use a 
password to keep a file safe, if you need to tell the password to somebody there is a 
risk of the password being seen by third parties. Diffie-Hellman key agreement itself 
is an anonymous (non-authenticated) key-agreement protocol: people involved in the 
trade do not need to prove who they are, but both people need to use their secret 
keys to fully decrypt the data. 

Diffie-Helman is generally explained by two sample parties, Alice and Bob, initiating 
a dialogue. Each has a piece of information they want to share, while preserving its 
secrecy. To do that they agree on a public piece of benign information that will be 
mixed with their privileged information as it travels over an insecure channel. Their 
secrets are mixed with the public information, or public key, and as the secrets are 
exchanged the information they want to share is commingled with the common 
secret. As they decipher the other’s message, they can extract the public information 
and with knowledge of their own secret, deduce the new information that was carried 
along. While seemingly uncomplicated in this method’s description, when long 
number strings are used for private and public keys, decryption by an outside party 
trying to eavesdrop is mathematically infeasible even with considerable resources. 

 

DH is one of the first practical implementations of asymmetric encryption or public-
key cryptography (PKC). It was published in 1976 by Whitfield Diffie and Martin 

https://simple.wikipedia.org/wiki/Secure_Sockets_Layer
https://simple.wikipedia.org/wiki/Third_party
https://simple.wikipedia.org/wiki/Anonymity
https://simple.wikipedia.org/wiki/Authentication
https://simple.wikipedia.org/wiki/Key-agreement_protocol
https://www.hypr.com/security-encyclopedia/asymmetric-encryption


Hellman. Other contributors who are credited with developing DH include Ralph 
Merkle and researchers within the United Kingdom’s intelligence services (c. 1969). 

 

Example:  
Step 1: Alice and Bob get public numbers P = 23, G = 9 
 
Step 2: Alice selected a private key a = 4 and 
        Bob selected a private key b = 3 
 
Step 3: Alice and Bob compute public values 
Alice:    x =(9^4 mod 23) = (6561 mod 23) = 6 
        Bob:    y = (9^3 mod 23) = (729 mod 23)  = 16 
 
Step 4: Alice and Bob exchange public numbers 
 
Step 5: Alice receives public key y =16 and 
        Bob receives public key x = 6 
 
Step 6: Alice and Bob compute symmetric keys 
        Alice:  ka = y^a mod p = 65536 mod 23 = 9 
        Bob:    kb = x^b mod p = 216 mod 23 = 9 
 
Step 7: 9 is the shared secret. 

Implementation:  # Diffie-Hellman Code in python 

def prime_checker(p): 

    # Checks If the number entered is a Prime Number or not 



    if p < 1: 

        return -1 

    elif p > 1: 

        if p == 2: 

            return 1 

        for i in range(2, p): 

            if p % i == 0: 

                return -1 

            return 1 

  

  

def primitive_check(g, p, L): 

    # Checks If The Entered Number Is A Primitive Root Or Not 

    for i in range(1, p): 

        L.append(pow(g, i) % p) 

    for i in range(1, p): 

        if L.count(i) > 1: 

            L.clear() 

            return -1 

        return 1 

  

  

l = [] 

while 1: 

    P = int(input("Enter P : ")) 



    if prime_checker(P) == -1: 

        print("Number Is Not Prime, Please Enter Again!") 

        continue 

    break 

  

while 1: 

    G = int(input(f"Enter The Primitive Root Of {P} : ")) 

    if primitive_check(G, P, l) == -1: 

        print(f"Number Is Not A Primitive Root Of {P}, Please Try Again!") 

        continue 

    break 

  

# Private Keys 

x1, x2 = int(input("Enter The Private Key Of User 1 : ")), int( 

    input("Enter The Private Key Of User 2 : ")) 

while 1: 

    if x1 >= P or x2 >= P: 

        print(f"Private Key Of Both The Users Should Be Less Than {P}!") 

        continue 

    break 

  

# Calculate Public Keys 

y1, y2 = pow(G, x1) % P, pow(G, x2) % P 

  

# Generate Secret Keys 



k1, k2 = pow(y2, x1) % P, pow(y1, x2) % P 

  

print(f"\nSecret Key For User 1 Is {k1}\nSecret Key For User 2 Is {k2}\n") 

  

if k1 == k2: 

    print("Keys Have Been Exchanged Successfully") 

else: 

    print("Keys Have Not Been Exchanged Successfully") 

Output: 

PS C:\Users\Sashu Akshu> & "C:/Program Files/Python312/python.exe" 
"c:/Users/Sashu Akshu/Desktop/myproject/myproject/# Diffie-Hellman Code.py" 

Enter P : 40 

Number Is Not Prime, Please Enter Again! 

Enter P : 11 

Enter The Primitive Root Of 11: 7 

Enter The Private Key Of User 1: 5 

Enter The Private Key Of User 2 : 3 

 

Secret Key For User 1 Is 10 

Secret Key For User 2 Is 10 

 

Keys Have Been Exchanged Successfully 

Q3. Explain Digital Signature Algorithm (DSA) 
With an Example. 

A Digital Signature is a verification method made by the recipient to ensure the 
message was sent from the authenticated identity. When a customer signs a check, 



the bank must verify that he issued that specific check. In this case, a signature on a 
document acts as a sign of authentication and verifies that the document is authentic. 
Suppose we have: 
• Alice is the entity that sends a message or initiates communication. 
• Bob represents the recipient or receiver of the message. 
• Eve represents an eavesdropper or adversary who may attempt to intercept or 

tamper with the communication. 
In Public Key cryptography (also known as Asymmetric cryptography), the 
communication process is as follows: 
• Alice encrypts the message using Bob’s public key. 
• The encrypted message reaches Bob. 
• Bob decrypts the message sent by Alice using his private key. 
Now, suppose when Alice sends a message to Bob, then Bob will check if the sender 
is authentic; to ensure that it was Alice who sent the message, not Eve. For this, Bob 
can ask Alice to sign the message electronically. So we can say that an electronic 
signature can prove that Alice is authentic and is the one sending the message. We 
called this type of signature a digital signature. 
What is Digital Signature? 
Digital Signature is a verification method. Digital signatures do not provide confidential 
communication. If you want to achieve confidentiality, both the message and the 
signature must be encrypted using either a secret key or a public key cryptosystem. 
This additional layer of security can be incorporated into a basic digital signature 
scheme. 

 

Model of Digital Signature Process 



Methods of Digital Signature 
These two are standard Approaches to implement the Digital Signature: 
• Rivest-Shamir-Adleman (RSA) 
• Digital Signature Algorithm (DSA) 
 
 
Rivest-Shamir-Adleman (RSA) 
In the RSA approach, the message that needs to be signed is first fed into a hash 
function that generates a secure hash code of fixed length. The sender’s private key 
is then used to encrypt the hash code which makes it signature. The next step 
involves sending both the signature and the message to the intended receiver. For 
validation purposes, after receiving the message, the recipient first computes its 
hash-code. The sender’s public key is applied by recipient to decrypt this already 
encrypted signature. In case if decrypted signature corresponds to recipient-
produced hash code that means that signature would be considered as valid. Since 
only the sender has access to the private key, only they could have produced a valid 
signature. 
You can refer the below diagram for RSA, here, 
• M = Message or Plaintext 
• H = Hash Function 
• || = bundle the plantext and hash function (hash digest) 
• E = Encryption Algorithm 
• D = Decryption Algorithm 
• PUa = Public key of sender 
• PRa = Private key of sender 

 

RSA approach 

Digital Signature Algorithm (DSA) 
The DSA (Digital Signature Algorithm) approach involves using of a hash function to 
create a hash code, same as RSA. This hash code is combined with a randomly 
generated number k as an input to a signature function. The signature function 
depends on the sender’s private key (PRa) as well as a set of parameters that are 
known to a group of communicating principals. This set can be considered as a 
global public key (PUG). The output of the signature function is a signature with two 



components, s and r. When an incoming message is received, a hash code is 
generated for the message. This hash code is then combined with the signature and 
input into a verification function. The verification function depends on the global 
public key as well as the sender’s public key (PUa) which is paired with the sender’s 
private key. The output of the verification function returns a value equal to the 
signature’s component r, if the signature is valid. The signature function is designed 
in such a way that only the sender, with knowledge of the private key, can produce a 
valid signature. 
You can refer below diagram for DSA, where, 
• M = Message or Plaintext 
• H = Hash Function 
• || = bundle the plantext and hash function (hash digest) 
• E = Encryption Algorithm 
• D = Decryption Algorithm 
• PUa = Public key of sender 
• PRa = Private key of sender 
• Sig = Signature function 
• Ver = Verification function 
• PUG = Global public Key 

 

DSA Approach 

Primary Termologies 
• User’s Private Key (PR): This key is publicly known and can be shared with 

anyone. It’s used to verify digital signatures created with a corresponding private 
key. 

• User’s Public Key (PU): A top-secret cryptographic key only possessed by the 
user is used in DSA algorithm’s digital signature generation. As it is, the private 
key must be kept secret and secure because it proves that a given user is 
genuine. 

• Signing (Sig): Signing involves creating a digital signature with the help of a 
user’s private key. In case of DSA, this process requires mathematical operations 



to be performed on the message that should be signed using a given private key 
in order to generate a unique signature for that message. 

• Verifying (Ver): Verifying is the process of verifying whether or not a digital 
signature has been forged using its corresponding public key. In DSA, this 
involves comparing the messages hash against the verification value through 
mathematical operations between two binary strings – one representing an 
encrypted data and another one representing plain-text original message. 

Steps to Perform DSA 
The Digital Signature Algorithm (DSA) is a public-key technique (i.e., assymetric 
cryptography) and it is used to provide only the digital signature function, and it 
cannot be used for encryption or key exchange. 
The Steps to perform the Digital Signature Algorithm can be broadly divided into: 
• Global Public-Key Components 
• User’s Private Key 
• User’s Public Key 
• Signing 
• Verifying 
1. Global Public-Key Components 

There are three parameters that are public and can be shared to a set of users. 
• A prime number p is chosen with a length between 512 and 1024 bits such that q 

divides (p – 1). So, p is prime number where 2L-1 < p <2L for 512<= L<=1024 
and L is a multiple of 64; i.e., bit length of between 512 and 1024 bits in 
increments of 64 bits. 

• Next, an N-bit prime number q is selected. So, q is prime divisor of (p – 1), where 
2N-1 < q < 2N i.e., bit length of N bits. 

• Finally, g is selected to be of the form h(p-1)/q mod p, where h is an integer 
between 1 and (p – 1) with the limitation that g must be greater than 1. So, g is = 
h(p – 1)/q mod p, where h is any integer with 1 < h < (p – 1) such that h(p-
1)/q mod p > 1. 

If a user has these numbers, then it can selects a private key and generates a public 
key. 
2. User’s Private Key 

The private key x should be chosen randomly or pseudorandomly and it must be a 
number from 1 to (q – 1), so x is random or pseudorandom integer with 0 < x < q. 
3. User’s Public Key 

The public key is computed from the private key as y = gx mod p. The computation 
of y given x is simple. But, given the public key y, it is believed to be computationally 
infeasible to choose x, which is the discrete logarithm of y to the base g, mod p. 
4. Signing 

If a user want to develop a signature, a user needs to calculates two quantities, r and 
s, that are functions of the public key components (p, q, g), the hash code of the 
message H(M, the user’s private key (x), and an integer k that must be generated 
randomly or pseudo randomly and be unique for each signing. k is generated 
randomly or pseudo randomly integer such that 0<k < q. 



 

Signing 

5. Verification 

Let M, r′, and s′ be the received versions of M, r, and s, respectively. 
Verification is performed using the formulas shown in below: 
• w = (s′)-1 mod q 
• u1 = [H(M′)w] mod q 
• u2 = (r′)w mod q 
• v = [(gu1 yu2) mod p] mod q 
The receiver needs to generate a quantity v that is a function of the public key 
components, the sender’s public key, and the hash code of the message. If this 
value matches the r value of the signature, then the signature is considered as valid. 
TEST: v = r′ 



 

Verification 

Now, at the end it will test on the value r, and it does not depend on the message or 
plaintext as, r is the function of k and the three global public-key components as 
mentioned above. The multiplicative inverse of k (mod q) when passed to the 
function that also has as inputs the message hash code and the user’s private key. 
The structure of this function is such that the receiver can recover r using the 
incoming message and signature, the public key of the user, and the global public 
key. 
It is given that there is difficulty in taking discrete logarithms, it is not feasible for an 
attacker to recover k from r or to recover x from s. The only computationally 
demanding task in signature generation is the exponential calculation gk mod p. 
Because this value does not depend on the message to be signed, it can be 
computed ahead of time. Indeed, a user could precalculate a number of values of r 
to be used to sign documents as needed. The only other somewhat demanding task 
is the determination of a multiplicative inverse, k-1. 
Services 
• Message Authentication: A secure digital signature scheme, like a secure 

conventional signature (one that cannot be easily copied) can provide message 
authentication (also referred to as data-origin authentication). Bob can easily 
confirm that the plaintext/message is sent by Alice as Alice’s public key is used 
for verification and the Alice’s public key woult not verify the signature signed by 
Eve’s private key. Hence, A digital signature provides message authentication. 

• Message Integrity: When we sign a whole message, its integrity remains intact 
because if the message changes, we won’t get the same signature. Nowadays, 
digital signature methods use a special function called a hash function in both 
signing and verifying to ensure the message’s integrity. 

• Nonrepudiation: If Alice signs a message and later claims she didn’t, can Bob 
provide evidence that she did? For example, if Alice instructs a bank (Bob) to 
transfer $10,000 to Ted’s account and then denies sending the message, Bob 
needs to keep the signed message and use Alice’s public key to recreate it. 
However, this approach may not work if Alice changes her keys or disputes the 



authenticity of the file. A solution is involving a trusted third party. This trusted 
party can authenticate messages and prevent Alice from denying them. In this 
setup, Alice sends her message along with her identity, Bob’s identity, and her 
signature to the trusted center. The center verifies the message’s authenticity and 
timestamps it before creating its own signature. This process ensures that if Alice 
denies sending the message later, the center can provide evidence to settle the 
dispute. Encryption can also be added for confidentiality. Thus, nonrepudiation is 
achievable through a trusted party. 

Advantages of DSA 
Authentication: At some point, digital signatures ensure strong identity authentication 
for the sender. The recipient can be sure that the message or document was signed 
by the purported signatory. 
• Integrity: Digital signatures ensure the integrity of the content. If something is 

altered in the content after the signature is made, then it becomes invalid with 
respect to verifying the content. 

• Non-Repudiation: A digital signature gives non-repudiation, meaning the sender 
cannot disclaim his creation of that document post factum. Most relevant in legal 
and contractual issues. 

• Efficiency: Digital signatures make the process of signing electronic and 
automate it, giving way to fast online transactions free from the need of manual 
verification, paperwork, and a physical signature. 

• Security: As long as the whole digital signing process is well organized, digital 
signatures may prove to be secure. Cryptographic public key cryptography and 
hashing algorithms prevent unauthorized parties from forging digital signatures. 

• World Acceptance: Such a mechanism (digital signatures) to represent the 
conclusion of the related transaction in case of legal or contractual terms is 
known and widely accepted all over the world. 

• Timestamping: Timestamping would also make another secure layer against 
replay attacks and against the freshness of the signature. 

• Cost Savings: The digital signing process discontinues the need for transporting 
documents, thereby saving on costs to be done with printing, courier services, 
and manual handling. 

Disadvantages of DSA 
• Key Management Complexity: Cryptographic keys that are used for signing 

documents must be properly managed. Generating, storing, and distributing keys 
in a secure manner are all complicated procedures that need to be attended to, 
and revocation has to be handled carefully. 

• Infrastructure Dependence: Digital signatures are built on a secure and reliable 
infrastructure of Public Key Infrastructure (PKI) and Certificate Authorities. If the 
infrastructure is compromised or becomes unavailable, it may compromise trust 
in digital signatures. 

• Legal and Regulatory Challenges: Although many people are increasingly 
using digital signatures, there might still be legal and regulatory challenges in 
some places. It will be very important to observe local laws and standards. 

• Initial Setup Costs: A proper setup of an extensive digital signature system may 
include the cost of obtaining certificates for digital certificates, putting in place 
safety measures, and training of the users. 

• Offline Usability: In the event of not having access to the signer’s private key, 
digital signatures are found to be challenged. Solutions of hardware tokens and 
secure elements add to the complexity. 

https://www.geeksforgeeks.org/public-key-infrastructure/


• User Education: Education of the proper application and value of digital 
signatures is necessary in order that the users should be educated in use. The 
correct measures to be taken against vulnerability, as well as being aware of any 
possible threat, are important in successful implementation. 

• Vulnerability to Key Compromise: Private keys need to be safeguarded from 
unauthorized access since one compromised private key can initiate fraudulent 
signatures. 

Q4. Explain the Following Types of One-time 
Password (OTP) Algorithms with Examples:  
a . Time-based OTP (TOTP)  
b. HMAC-based OTP (HOTP) 

One Time Password (OTP) algorithm in Cryptography 
Authentication, the process of identifying and validating an individual is the 
rudimentary step before granting access to any protected service (such as a 
personal account). Authentication has been built into the cyber security standards 
and offers to prevent unauthorized access to safeguarded resources. 
Authentication mechanisms today create a double layer gateway prior to unlocking 
any protected information. This double layer of security, termed as two factor 
authentication, creates a pathway that requires validation of credentials 
(username/email and password) followed by creation and validation of the One 
Time Password (OTP). The OTP is a numeric code that is randomly and uniquely 
generated during each authentication event. This adds an additional layer of 
security, as the password generated is fresh set of digits each time an 
authentication is attempted and it offers the quality of being unpredictable for the 
next created session. The two main methods for delivery of the OTP is: 
1. SMS Based: This is quite straightforward. It is the standard procedure for 

delivering the OTP via a text message after regular authentication is successful. 
Here, the OTP is generated on the server side and delivered to the 
authenticator via text message. It is the most common method of OTP delivery 
that is encountered across services. 

2. Application Based: This method of OTP generation is done on the user side 
using a specific smartphone application that scans a QR code on the screen. 
The application is responsible for the unique OTP digits. This reduces wait time 
for the OTP as well as reduces security risk as compared to the SMS based 
delivery. 

The most common way for the generation of OTP defined by The Initiative For 
Open Authentication (OATH) is the Time Based One Time Passwords (TOTP), 
which is a Time Synchronized OTP. In these OTP systems, time is the cardinal 
factor to generate the unique password. The password generated is created using 
the current time and it also factors in a secret key. An example of this OTP 
generation is the Time Based OTP Algorithm (TOTP) described as follows: 
1. Backend server generates the secret key 
2. The server shares secret key with the service generating the OTP 
3. A hash based message authentication code (HMAC) is generated using the 

obtained secret key and time. This is done using the cryptographic SHA-1 
algorithm. Since both the server and the device requesting the OTP, have 
access to time, which is obviously dynamic, it is taken as a parameter in the 
algorithm. Here, the Unix timestamp is considered which is independent of time 



zone i.e. time is calculated in seconds starting from January First 1970. Let us 
consider “0215a7d8c15b492e21116482b6d34fc4e1a9f6ba” as the generated 
string from the HMAC-SHA1 algorithm. 

4. The code generated is 20 bytes long and is thus truncated to the desired length 
suitable for the user to enter. Here dynamic truncation is used. For the 20-byte 
code “0215a7d8c15b492e21116482b6d34fc4e1a9f6ba”, each character 
occupies 4 bits. The entire string is taken as 20 individual one byte string.

We look at the last character, here a. The decimal value of which is taken to 
determine the offset from which to begin truncation. Starting from the offset 
value, 10 the next 31 bits are read to obtain the string “6482b6d3″. The last 
thing left to do, is to take our hexadecimal numerical value, and convert it to 
decimal, which gives 1686288083. All we need now are the last desired length 
of OTP digits of the obtained decimal string, zero-padded if necessary. This is 
easily accomplished by taking the decimal string, modulo 10 ^ number of digits 
required in OTP. We end up with “288083” as our TOTP code. 

5. A counter is used to keep track of the time elapsed and generate a new code 
after a set interval of time 

6. OTP generated is delivered to user by the methods described above. 
Apart from the time-based method described above, there also exist certain 
mathematical algorithms for OTP generation for example a one-way function that 
creates a subsequent OTP from the previously created OTP. The two factor 
authentication system is an effective strategy that exploits the authentication 
principles of “something that you know” and “something that you have”.The 
dynamic nature of the latter principle implemented by the One Time Password 
Algorithm is crucial to security and offers an effective layer of protection against 
malicious attackers. The unpredictability of the OTP presents a hindrance in 
peeling off the layers that this method of cryptography has to offer. 
Example: 
we’ll create a simple One Time Password (OTP) algorithm using Python’s built-in 
‘secrets' module. The OTP algorithm will generate a random one-time password, 
which will be used as a secure authentication token for a user. 
Explanation: The OTP algorithm will use a secret key (a random string) to 
generate the one-time password. The ‘secret’ key should be kept secure and not 
shared with others. The secrets module provides a strong source of randomness to 
generate the key securely. 
We’ll use the ‘secrets.token_hex()' function to generate a random secret key and 
the ‘secrets.choice()' function to create a random OTP by choosing characters 
randomly from a predefined set. 
Python code 

import secrets 



  

# Function to generate a random secret key 

def generate_secret_key(): 

    return secrets.token_hex(16)  # 16 bytes (32 hex characters) 

  

# Function to generate a One Time Password (OTP) using the secret key 

def generate_otp(secret_key, length=6): 

    # Defining the characters allowed in the OTP 

    allowed_characters = "0123456789" 

  

    # Generating a random OTP using the secret key and allowed characters 

    otp = ''.join(secrets.choice(allowed_characters) for _ in range(length)) 

      

    return otp 

  

# Example usage 

if __name__ == "__main__": 

    # Generate a random secret key (this should be kept secure) 

    secret_key = generate_secret_key() 

  

    # Simulate sending the OTP to the user 

    otp = generate_otp(secret_key) 

  

    # Simulating user input for OTP verification 

    user_input = input("Please enter the received OTP:") 



  

    # Verify the OTP entered by the user 

    if user_input == otp: 

        print("OTP verification successful. Access granted!") 

    else: 

        print("OTP verification failed. Access denied!") 

Output: 

PS C:\Users\Sashu Akshu> & "C:/Program Files/Python312/python.exe" 
"c:/Users/Sashu Akshu/Desktop/myproject/myproject/otp generator.py" 

Please enter the received OTP:12345 

OTP verification failed. Access denied! 

Explanation of the above code 

1. The ‘generate_secret_key()' function generates a 16-byte (32 hexadecimal 
characters) random secret key using ‘secrets.token_hex()'. You can adjust the 
length if needed, but 16 bytes is considered secure. 

2. The ‘generate_otp()' function takes the secret key and an 
optional length argument (default is 6) to specify the length of the OTP. It 
creates an OTP by randomly choosing characters from the string “0123456789” 
(numbers only) and returns the OTP. 

3. In the example usage, we generate a random secret key using 
‘generate_secret_key()'. This key should be kept secure and not shared. 

4. We simulate sending the OTP to the user by calling 
‘generate_otp(secret_key)' and storing the OTP in the variable ‘otp'. 

5. We ask the user to input the received OTP and store it in the variable 
‘user_input'. 

6. Finally, we compare the user-inputted OTP with the generated OTP. If they 
match, the user is granted access, otherwise, access is denied. 

 

 HMAC(Hash based Message Authentication Code): 

HMAC (Hash-based Message Authentication Code) is a type of a message 

authentication code (MAC) that is acquired by executing a cryptographic hash 

function on the data (that is) to be authenticated and a secret shared key. Like any 

of the MAC, it is used for both data integrity and authentication. Checking data 

integrity is necessary for the parties involved in communication. HTTPS, SFTP, 

FTPS, and other transfer protocols use HMAC. The cryptographic hash function 

may be MD-5, SHA-1, or SHA-256. Digital signatures are nearly similar to 



HMACs i.e they both employ a hash function and a shared key. The difference lies 

in the keys i.e HMACs use symmetric key (same copy) while Signatures use 

asymmetric (two different keys).  
History 

Processes and decisions pertinent to business are greatly dependent on 
integrity. If attackers tamper this data, it may affect the processes and 
business decisions. So while working online over the internet, care must 
be taken to ensure integrity or least know if the data is changed. That is 
when HMAC comes into use.  

 Applications 
• Verification of e-mail address during activation or creation of an 

account. 
• Authentication of form data that is sent to the client browser and then 

submitted back. 
• HMACs can be used for Internet of things (IoT) due to less cost. 
• Whenever there is a need to reset the password, a link that can be 

used once is sent without adding a server state. 
• It can take a message of any length and convert it into a fixed-length 

message digest. That is even if you got a long message, the message 
digest will be small and thus permits maximizing bandwidth. 

Working of HMAC 

HMACs provides client and server with a shared private key that is known 
only to them. The client makes a unique hash (HMAC) for every request. 
When the client requests the server, it hashes the requested data with a 
private key and sends it as a part of the request. Both the message and 
key are hashed in separate steps making it secure. When the server 
receives the request, it makes its own HMAC. Both the HMACS are 
compared and if both are equal, the client is considered legitimate.  

The formula for HMAC:   
 HMAC = hashFunc(secret key + message)  

There are three types of authentication functions. They are message 
encryption, message authentication code, and hash functions. The major 
difference between MAC and hash (HMAC here) is the dependence of a 
key. In HMAC we have to apply the hash function along with a key on the 
plain text. The hash function will be applied to the plain text message. But 
before applying, we have to compute S bits and then append it to plain 
text and after that apply the hash function. For generating those S bits we 
make use of a key that is shared between the sender and receiver.  
  



 

Using key K (0 < K < b), K+ is generated by padding O’s on left side of 
key K until length becomes b bits. The reason why it’s not padded on right 



is change (increase) in the length of key. b bits because it is the block size 
of plain text. There are two predefined padding bits called ipad and opad. 
All this is done before applying hash function to the plain text message.  
  

 ipad - 00110110  

 opad - 01011100 

Now we have to calculate S bits  
K+ is EXORed with ipad and the result is S1 bits which is equivalent to b 
bits since both K+ and ipad are b bits. We have to append S1 with plain 
text messages. Let P be the plain text message.  
S1, p0, p1 upto Pm each is b bits. m is the number of plain text blocks. P0 
is plain text block and b is plain text block size. After appending S1 to 
Plain text we have to apply HASH algorithm (any variant). Simultaneously 
we have to apply initialization vector (IV) which is a buffer of size n-bits. 
The result produced is therefore n-bit hashcode i.e H( S1 || M ).  
Similarly, n-bits are padded to b-bits And K+ is EXORed with opad 
producing output S2 bits. S2 is appended to the b-bits and once again 
hash function is applied with IV to the block. This further results into n-bit 
hashcode which is H( S2 || H( S1 || M )).  
Summary:  
  
1. Select K.  

If K < b, pad 0’s on left until k=b. K is between 0 and b ( 0 < K < b ) 
2. EXOR K+ with ipad equivalent to b bits producing S1 bits. 
3. Append S1 with plain text M 
4. Apply SHA-512 on ( S1 || M ) 
5. Pad n-bits until length is equal to b-bits 
6. EXOR K+ with opad equivalent to b bits producing S2 bits. 
7. Append S2 with output of step 5. 
8. Apply SHA-512 on step 7 to output n-bit hashcode. 
Advantages 

• HMACs are ideal for high-performance systems like routers due to the 
use of hash functions which are calculated and verified quickly unlike 
the public key systems. 

• Digital signatures are larger than HMACs, yet the HMACs provide 
comparably higher security. 

• HMACs are used in administrations where public key systems are 
prohibited. 

Disadvantages  

• HMACs uses shared key which may lead to non-repudiation. If either 
sender or receiver’s key is compromised then it will be easy for 
attackers to create unauthorized messages. 

  



 


