
assignment-1

October 27, 2024

[11]: #Number game between user and computer
def computer_move(last_num):

target = 20
move_count = (target - last_num - 1) % 4
if move_count == 0:

move_count = 1
return list(range(last_num + 1, last_num + move_count + 1))

def number_game():
print("Number Game: Reach 20 to Win!")
last_num = 0

while last_num < 20:
player_input = input("enter the next 1, 2, or 3 numbers in sequence: ")
player_numbers = list(map(int, player_input.split()))

Check player's numbers are valid
if any(num <= last_num or num > last_num + 3 for num in player_numbers)␣

↪or len(player_numbers) > 3:
print("Invalid move! Please enter 1 to 3 numbers in sequence␣

↪starting from the last number.")
continue

last_num = player_numbers[-1]

Check if the player wins
if last_num >= 20:

print("Player Wins!!!")
break

Computer's move
computer_numbers = computer_move(last_num)
print(f"Computer played: {computer_numbers}")
last_num = computer_numbers[-1]

Check if the computer wins
if last_num >= 20:

print("Computer Wins!!!")

1

break
number_game()

Number Game: Reach 20 to Win!

enter the next 1, 2, or 3 numbers in sequence: 1

Computer played: [2, 3]

enter the next 1, 2, or 3 numbers in sequence: 4 5

Computer played: [6, 7]

enter the next 1, 2, or 3 numbers in sequence: 8

Computer played: [9, 10, 11]

enter the next 1, 2, or 3 numbers in sequence: 11 12 13

Invalid move! Please enter 1 to 3 numbers in sequence starting from the last
number.

enter the next 1, 2, or 3 numbers in sequence: 12 13

Computer played: [14, 15]

enter the next 1, 2, or 3 numbers in sequence: 16

Computer played: [17, 18, 19]

enter the next 1, 2, or 3 numbers in sequence: 20

Player Wins!!!

[26]: #Develop a function called ncr(n,r) which computes r-combinations of n-distinct␣
↪object .

#use this function to print pascal triangle, where number of rows is the input.
import math

def ncr(n, r):
return math.comb(n, r) # Alternatively: math.factorial(n) // (math.

↪factorial(r) * math.factorial(n - r))

def print_pascals_triangle(rows):
for n in range(rows):

row = []
for r in range(n + 1):

row.append(ncr(n, r))
print(" " * (rows - n), " ".join(map(str, row)))

Example usage:
num_rows = int(input("Enter the number of rows: "))
print_pascals_triangle(num_rows)

2

Enter the number of rows: 5

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

[28]: #Read a list of n numbers during runtime. Write a Python program to print the␣
↪repeated elements with frequency count in a list.

Read a list of numbers from the user (example input: "2 1 2 3 4 5 1 3 6 2 3␣
↪4")

numbers = list(map(int, input("Enter numbers separated by spaces: ").split()))
frequency_count = {}
for num in numbers:

if num in frequency_count:
frequency_count[num] += 1

else:
frequency_count[num] = 1

print("Output:")
for number, count in frequency_count.items():

print(f"Element {number} has come {count} times")

Enter numbers separated by spaces: 1 2 3 2 3 2 4 5 6 4 5 7 2 3 5 7 9

Output:
Element 1 has come 1 times
Element 2 has come 4 times
Element 3 has come 3 times
Element 4 has come 2 times
Element 5 has come 3 times
Element 6 has come 1 times
Element 7 has come 2 times
Element 9 has come 1 times

[9]: #Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2␣
↪from a file and perform the addition of Matrices A & B and Print the results.

def read_matrix_from_file(file_path):
with open(file_path, 'r') as file:

lines = file.readlines()
matrix = []
for line in lines:

Convert each line into a list of integers
row = list(map(int, line.strip().split()))
matrix.append(row)

return matrix

def add_matrices(A, B):

3

result = []
for i in range(2):

row = []
for j in range(2):

row.append(A[i][j] + B[i][j])
result.append(row)

return result

def print_matrix(matrix):
for row in matrix:

print(' '.join(map(str, row)))

Main program
file_path = r'C:\Users\I SAIJAYASREE\Downloads\Matrices.txt'
A = []
B = []

with open(file_path, 'r') as file:
lines = file.readlines()

for i in range(2):
row = list(map(int, lines[i].strip().split()))
A.append(row)

for i in range(2, 4):
row = list(map(int, lines[i].strip().split()))
B.append(row)

result = add_matrices(A, B)
print("matrix A", A)
print("matrix B", B)
print("Result of Matrix A + Matrix B:")
print_matrix(result)

matrix A [[1, 2], [3, 4]]
matrix B [[5, 6], [7, 8]]
Result of Matrix A + Matrix B:
6 8
10 12

[17]: #Write a program that overloads the + operator so that it can add two objects␣
↪of the class Fraction.

#Fraction can be considered of the for P/Q where P is the numerator and Q is␣
↪the denominator

class Fraction:
def __init__(self, numerator, denominator):

if denominator == 0:
raise ValueError("Denominator cannot be zero.")

self.numerator = numerator

4

self.denominator = denominator

def __add__(self, other):
if not isinstance(other, Fraction):

return NotImplemented
new_numerator = (self.numerator * other.denominator) + (other.numerator␣

↪* self.denominator)
new_denominator = self.denominator * other.denominator
return Fraction(new_numerator, new_denominator).simplify()

def simplify(self):
def gcd(a, b):

while b:
a, b = b, a % b

return a
common_divisor = gcd(abs(self.numerator), abs(self.denominator))
self.numerator //= common_divisor
self.denominator //= common_divisor
if self.denominator < 0:

self.numerator = -self.numerator
self.denominator = -self.denominator

return self

def __str__(self):
return f"{self.numerator}/{self.denominator}"

def __repr__(self):
return f"Fraction({self.numerator}, {self.denominator})"

numerator1 = int(input("Enter the numerator for the first fraction: "))
denominator1 = int(input("Enter the denominator for the first fraction: "))
numerator2 = int(input("Enter the numerator for the second fraction: "))
denominator2 = int(input("Enter the denominator for the second fraction: "))

fraction1 = Fraction(numerator1, denominator1)
fraction2 = Fraction(numerator2, denominator2)
result = fraction1 + fraction2
print(f"{fraction1} + {fraction2} = {result}")

Enter the numerator for the first fraction: 1
Enter the denominator for the first fraction: 2
Enter the numerator for the second fraction: 3
Enter the denominator for the second fraction: 4

1/2 + 3/4 = 5/4

[]:

5

