
                        Assignment – 16  

You are tasked with developing a Python code for sentiment extraction 

utilizing a  

provided sample dataset. The dataset consists of textual data annotated with  

labels categorizing sentiments into four categories: "rude," "normal," "insult," 

and  

"sarcasm."  

Dataset:   

● Real News:  

https://drive.google.com/file/d/1FL2HqgLDAP5550nd1h_8iBhAV 

ISTnzr/view?usp=sharing   

● Fake News:  

https://drive.google.com/file/d/1EdI_HyUeI_Fi2nld7rQnnGEpQqn_BwM 

/view? usp=sharing   

1. Outline the key steps involved in developing a sentiment extraction  

Algorithm using Python.  

2. Describe the structure and format of the sample dataset required for  

Sentiment extraction.  

3. Implement the Python code to read and pre-process the sample dataset for  

Sentiment analysis. Ensure that the code correctly handles text data and  

Labels.  

4. Discuss the process of classifying sentiments into the specified categories:  

"Rude," "normal," "insult," and "sarcasm." Explain any techniques or  

Algorithms employed for this classification task.  

5. Evaluate the effectiveness of the sentiment extraction algorithm on the  

Provided sample dataset. Consider metrics such as accuracy, precision,  

Recall, and F1-score.  

6. Propose potential enhancements or modifications to improve the  

Performance of the sentiment extraction algorithm. Justify your  

Recommendations.  

7. Reflect on the ethical considerations associated with sentiment analysis,  



Particularly regarding privacy, bias, and potential misuse of extracted 

Sentiments.  

8. Write a complete code for this assignment. 

Developing a sentiment extraction algorithm using Python involves several key 

steps. Here is an outline of those steps: 

 Data Collection: Gather a dataset with labeled sentiment data, including a variety 

of text samples with corresponding sentiment labels (positive, negative, neutral). 

 Data Preprocessing: Clean and preprocess the text data by removing punctuation, 

converting to lowercase, removing stopwords, and handling any other necessary text 

transformations. 

Feature Extraction: Convert the preprocessed text data into numerical feature 

vectors that can be fed into a machine learning model. Common techniques for 

feature extraction include bag-of-words, TF-IDF, or word embeddings like Word2Vec 

or GloVe. 

 Model Selection: Choose an appropriate machine learning algorithm for sentiment 

analysis such as Logistic Regression, Naive Bayes, Support Vector Machines, or 

more advanced deep learning models like Recurrent Neural Networks (RNN) or 

Convolutional Neural Networks (CNN). 

 Model Training: Split your dataset into training and testing sets. Use the training 

set to train your sentiment extraction model by fitting it to the feature vectors and 

corresponding sentiment labels. 

 Model Evaluation: Evaluate the performance of your sentiment extraction model 

using the testing set. Common evaluation metrics for sentiment analysis include 

accuracy, precision, recall, and F1-score. 

 Fine-tuning and Optimization: Iterate on your model by fine-tuning 

hyperparameters, exploring different feature extraction techniques or model 

architectures, and experimenting with data augmentation or ensemble methods to 

improve performance. 

Deployment: Once you are satisfied with the performance of your sentiment 

extraction algorithm, deploy it in a production environment. This could involve 

creating APIs or integrating it into a larger application. 

The structure and format of a sample dataset required for sentiment extraction can 

vary, but it typically consists of two main components: 

1. Text Data: The dataset should include a collection of text samples or documents 

on which sentiment analysis will be performed. Each text sample represents a piece 

of content (such as reviews, tweets, comments, or product descriptions) that 

expresses opinions or sentiments. 

 



2. Sentiment Labels: Along with the text data, the dataset should also include 

sentiment labels associated with each text sample. These labels indicate the 

sentiment expressed in the corresponding text, such as positive, negative, or neutral. 

Sometimes, sentiment labels are represented as numerical values (e.g., 0 for 

negative, 1 for neutral, and 2 for positive). 

Here is an example of how the dataset might be organized in a tabular format: 

 

| Text Data | Sentiment Label | 

|---------------------|-----------------| 

| I loved the movie! | Positive | 

| This book is boring.| Negative | 

| The product is okay.| Neutral | 

| Fantastic experience| Positive | 

| Disappointed with the service | Negative | 

 

In this sample dataset, each row represents a text sample, and the corresponding 

sentiment label indicates the sentiment expressed in the text. This structure allows 

the sentiment extraction algorithm to learn patterns and make predictions based on 

the text and sentiment relationship. 

It's worth noting that datasets for sentiment extraction can vary in size, domain, and 

annotation quality. It is essential to ensure that the dataset is representative and 

sufficiently labeled to train an effective sentiment extraction algorithm. 

import pandas as pd 

import re 

import nltk 

from nltk.corpus import stopwords 

from sklearn.model_selection import train_test_split 

 

# Read the dataset into a pandas DataFrame 

df = pd.read_csv('sample_dataset.csv')  # Replace 'sample_dataset.csv' with 

the actual file name 

 

# Preprocessing steps 

def preprocess_text(text): 



    # Remove special characters and numbers 

    text = re.sub('[^a-zA-Z]', ' ', text) 

 

    # Convert text to lowercase 

    text = text.lower() 

 

    # Tokenize the text 

    tokens = nltk.word_tokenize(text) 

 

    # Remove stopwords 

    stop_words = set(stopwords.words('english')) 

    tokens = [token for token in tokens if token not in stop_words] 

 

    # Join the tokens back into a single string 

    preprocessed_text = ' '.join(tokens) 

     

    return preprocessed_text 

 

# Preprocess the text data 

df['preprocessed_text'] = df['text'].apply(preprocess_text) 

 

# Split the data into train and test sets 

train_data, test_data, train_labels, test_labels = 

train_test_split(df['preprocessed_text'], df['label'], test_size=0.2, 

random_state=42) 

 

# Further processing or model training can be performed on the preprocessed 

data 

 

Classifying Sentiment: Rude, Normal, Insult, and Sarcasm 



Sentiment analysis, also known as opinion mining, aims to understand the emotional 
tone behind text data. Classifying sentiment into specific categories like "rude," 
"normal," "insult," and "sarcasm" can be challenging due to the nuances of human 
language. Here's a breakdown of the process and techniques used: 

1. Data Preprocessing: 

• Text Cleaning: Removing noise like punctuation, stop words (common words 
like "the" or "a"), and converting text to lowercase is essential. 

• Lemmatization/Stemming: Reducing words to their base form (e.g., 
"running" becomes "run") improves consistency. 

2. Feature Engineering: 

• Lexicon-based Approach: Words are assigned sentiment scores based on 
pre-built sentiment lexicons (lists of words with positive, negative, or neutral 
sentiment). 

• N-grams: Analyzing sequences of words (bigrams, trigrams) can capture 
context. "Great job" is positive, but "big mistake" is negative. 

3. Machine Learning Models: 

• Supervised Learning: 
o Training data with labeled examples (e.g., a sentence marked as 

"rude") is fed to models like Support Vector Machines (SVMs) or Naive 
Bayes. 

o The model learns to identify patterns associated with each sentiment 
category. 

• Deep Learning: Advanced techniques like Recurrent Neural Networks 
(RNNs) and Long Short-Term Memory (LSTM) networks can analyze the 
sequence of words and context more effectively, especially for sarcasm 
detection. 

Challenges of Classifying Specific Categories: 

• Subjectivity: "Rude" can be subjective. "That was a bold choice" might be 
rude depending on context. 

• Sarcasm: Identifying sarcasm requires understanding the context and often 
relies on nonverbal cues like tone of voice, which text lacks. 

o Techniques like identifying inconsistencies between the literal meaning 
and the sentiment expressed, or the use of exclamation points (!) and 
question marks (?) can help. 

Additional Techniques: 

• Emojis and Sentiment Analysis: Emojis can convey strong sentiment. 
Sentiment lexicons can be expanded to include emojis with positive or 
negative connotations. 

• Hybrid Approaches: Combining lexicon-based methods with machine 
learning can improve accuracy. 



Overall, sentiment classification is an evolving field. While models can achieve good 
accuracy for basic sentiment (positive, negative, neutral), identifying nuances like 
rudeness and sarcasm requires ongoing development and consideration of context. 

Evaluating Sentiment Extraction Algorithm with "Rude," "Normal," "Insult," 
and "Sarcasm" Labels 

Here's how to evaluate the effectiveness of the sentiment extraction algorithm on 
your dataset: 

Metrics: 

• Accuracy: Overall percentage of correctly classified samples across all 
categories ("rude," "normal," "insult," and "sarcasm"). 

• Precision: For each sentiment category, the proportion of samples the 
algorithm classified as that category that actually belong to that category 
(avoiding false positives). 

• Recall: For each sentiment category, the proportion of samples that actually 
belong to that category that the algorithm correctly classified (avoiding false 
negatives). 

• F1-score: Harmonic mean of precision and recall, combining both metrics into 
a single score. 

Evaluation Process: 

1. Split the dataset: Divide your data into a training set (used to train the 
algorithm) and a testing set (used to evaluate its performance). 

2. Train the model: Train your sentiment extraction algorithm on the training 
set. 

3. Evaluate on the testing set: Make predictions on the testing set using the 
trained model. 

4. Calculate evaluation metrics: Using the ground truth labels (actual 
sentiment) and the model's predictions on the testing set, calculate accuracy, 
precision, recall, and F1-score for each category ("rude," "normal," "insult," 
and "sarcasm"). 

Challenges: 

• Balanced Dataset: The effectiveness of these metrics depends on a 
balanced dataset. If most data belongs to the "normal" category, the model 
might achieve high overall accuracy but struggle with less frequent categories 
like "insult" or "sarcasm." Analyze precision and recall for each category to 
identify potential weaknesses. 

• Class Imbalance Techniques: If the dataset is imbalanced, consider using 
techniques like oversampling (replicating data from the minority class) or 
under sampling (removing data from the majority class) to create a more 
balanced training set. 

 



Interpretation: 

• A high accuracy score indicates the model performs well overall. 
• High precision for a category like "insult" means the model rarely misclassifies 

other types of text as insults (reducing false positives). 
• High recall for "sarcasm" means the model identifies most sarcastic 

comments (reducing false negatives). 
• F1-score provides a balanced view of precision and recall. 

Additional Considerations: 

• Error Analysis: Analyse the types of errors the model makes to understand 
its weaknesses. Are there specific types of sarcasm it struggles with? Does it 
misclassify neutral comments as rude? 

• Visualization Techniques: Consider using confusion matrices to visualize 
how the model performed on each category classification. 

By evaluating sentiment extraction algorithm using these metrics and considering the 
challenges, you can gain valuable insights into its effectiveness for classifying "rude," 
"normal," "insult," and "sarcasm" sentiments in your specific dataset. 

To improve the performance of the sentiment extraction algorithm, we can 
consider the following potential enhancements or modifications: 
 
1. Integration of Domain-specific Language Models: 
Incorporating domain-specific language models such as specialized sentiment 
lexicons or dictionaries can enhance the algorithm's understanding of industry-
specific language nuances and sentiment expressions. By integrating domain-
specific knowledge, the algorithm can more accurately classify sentiments within the 
context of the target domain. 
 
2. Fine-tuning Pretrained Language Models: 
Fine-tuning pretrained language models like BERT, RoBERTa, or ALBERT on 
domain-specific datasets can improve the algorithm's performance by adapting to the 
specific sentiment patterns and vocabulary of the target domain. Fine-tuning allows 
the model to capture domain-specific sentiment nuances and context, leading to 
more accurate sentiment extraction. 
 
3. Data Augmentation Techniques: 
Augmenting the training data through techniques like back translation, synonym 
replacement, or data synthesis can increase the diversity and quantity of training 
examples. By exposing the algorithm to a wider range of sentiment expressions, 
data augmentation can improve the model's ability to generalize and accurately 
classify sentiments in real-world text. 
 
4. Ensemble Learning: 
Implementing ensemble learning techniques such as bagging, boosting, or model 
stacking can enhance the robustness and generalization capability of the sentiment 
extraction algorithm. By combining multiple sentiment classifiers or models, 



ensemble methods can mitigate individual model biases and errors, leading to 
improved sentiment classification performance. 
 
5. Attention Mechanisms: 
Leveraging attention mechanisms in neural network architectures can allow the 
algorithm to focus on critical words or phrases that contribute most to sentiment 
classification decisions. Attention mechanisms help the model capture important 
sentiment-bearing tokens and dependencies, improving the interpretability and 
performance of sentiment extraction. 
 
6. Multi-task Learning: 
Employing multi-task learning by training the sentiment extraction model on related 
tasks such as sentiment intensity prediction or aspect-based sentiment analysis can 
lead to a more holistic understanding of text sentiment. By jointly optimizing multiple 
sentiment-related objectives, the algorithm can capture nuanced sentiment 
information and improve overall sentiment classification accuracy. 
 
7. Active Learning: 
Implementing active learning strategies to iteratively select and label the most 
informative data points can enhance the efficiency and effectiveness of sentiment 
extraction model training. By prioritizing the annotation of crucial data samples, 
active learning can facilitate the algorithm's learning process and improve sentiment 
classification performance with limited labeled data. 
 
By incorporating these enhancements and modifications, we can enhance the 
sentiment extraction algorithm's performance by leveraging domain-specific 
knowledge, fine-tuning models, augmenting data, utilizing ensemble methods, 
attention mechanisms, multi-task learning, and active learning techniques. These 
strategies can collectively improve the algorithm's accuracy, robustness, and 
generalization capability in sentiment analysis tasks. 
 
Sentiment analysis, like any other AI technology, raises important ethical 

considerations that need to be carefully addressed. Let's reflect on the key ethical 

considerations associated with sentiment analysis: 

1. Privacy: Sentiment analysis often requires access to large amounts of personal 

data, which can include sensitive information. It is crucial to respect individuals' 

privacy rights by obtaining informed consent, anonymizing data, and ensuring secure 

storage and transmission of data. Transparent privacy policies and adherence to 

data protection regulations are imperative to maintain trust. 

 

2. Bias: Bias in sentiment analysis can arise from various sources, such as biased 

training data, algorithmic design, or societal prejudices. Biased sentiment analysis 

systems may perpetuate discrimination, reinforce stereotypes, or produce unfair 

outcomes. Regular auditing and diverse representation in the development of 

sentiment analysis models can help mitigate bias and ensure more equitable results. 

 



3. Data source representation: Sentiment analysis models heavily rely on training 

data. If the training data is unrepresentative or lacks diversity, the model may fail to 

capture sentiments from different demographic groups, cultural backgrounds, or 

languages. Efforts should focus on collecting diverse and inclusive datasets that 

accurately represent the intended user base. 

 

4. Transparency and explainability: The opacity of sentiment analysis algorithms 

can lead to concerns about accountability and fairness. Organizations should strive 

for transparency in disclosing the methodology, training data sources, and limitations 

of sentiment analysis systems. Providing explanations for the sentiment predictions 

can help users understand and evaluate the validity of the results. 

 

5. Misuse of extracted sentiments: Sentiment analysis can have unintended 

consequences if the extracted sentiments are misused. It is essential to use 

sentiment analysis responsibly and ethically, respecting the privacy and well-being of 

individuals. Safeguards should be in place to prevent the misuse of sentiment 

analysis for purposes such as manipulating public opinion, fueling discrimination, or 

infringing on people's rights. 

Addressing these ethical considerations requires collaborative efforts between 

developers, researchers, policymakers, and the wider community. Striving for 

transparency, fairness, inclusivity, and ongoing monitoring of sentiment analysis 

systems can help mitigate potential ethical risks and ensure that sentiment analysis 

is used in a responsible and beneficial manner. 

Coding part for the given files: 

 

 

1)pip install nltk scikit-learn pandas pip install nltk scikit-learn pandas 

 

# Import all the Libraries 

 

import nltk 

 

import pandas as pd 

 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

from sklearn.svm import SVC 

 

from sklearn.metrics import classification_report 

 

nltk.download("punkt") ##Fucntion: Smilies 

nltk.download("stopwords") ##Function: Build Customed Stopwords:: Specific 

to Domain 

 



 

from google.colab import drive 

 

 

drive.mount("/content/drive", force_remount=True) 

 

file_path="/content/drive"+"/My Drive/"+ "JNTUSessions/Fake.csv" 

data = pd.read_csv(file_path) 

data.head() 

 

df = pd.DataFrame(data) ## etl():: AWS, Facebook, X, GCP 

df 

 title text subject date 

0 
Donald Trump Sends 

Out Embarrassing 
New Year’... 

Donald Trump just 
couldn t wish all 

Americans ... 
News 

December 
31, 2017 

1 
Drunk Bragging 

Trump Staffer Started 
Russian ... 

House Intelligence 
Committee Chairman 

Devin Nu... 
News 

December 
31, 2017 

2 
Sheriff David Clarke 

Becomes An Internet 
Joke... 

On Friday, it was 
revealed that former 

Milwauk... 
News 

December 
30, 2017 

3 
Trump Is So 

Obsessed He Even 
Has Obama’s Name... 

On Christmas day, 
Donald Trump 

announced that ... 
News 

December 
29, 2017 

4 
Pope Francis Just 
Called Out Donald 

Trump Dur... 

Pope Francis used his 
annual Christmas Day 

mes... 
News 

December 
25, 2017 

... ... ... ... ... 

23476 
McPain: John McCain 

Furious That Iran 
Treated ... 

21st Century Wire says 
As 21WIRE reported 

earl... 

Middle-
east 

January 16, 
2016 

23477 
JUSTICE? Yahoo 

Settles E-mail Privacy 
Class-ac... 

21st Century Wire says 
It s a familiar theme. ... 

Middle-
east 

January 16, 
2016 

23478 
Sunnistan: US and 

Allied ‘Safe Zone’ 
Plan to T... 

Patrick Henningsen 
21st Century 

WireRemember ... 

Middle-
east 

January 15, 
2016 



 title text subject date 

23479 
How to Blow $700 
Million: Al Jazeera 

America F... 

21st Century Wire says 
Al Jazeera America 

will... 

Middle-
east 

January 14, 
2016 

23480 
10 U.S. Navy Sailors 

Held by Iranian 
Military ... 

21st Century Wire says 
As 21WIRE predicted 

in ... 

Middle-
east 

January 12, 
2016 

23481 rows × 4 columns 

 

 

stopwords = set(nltk.corpus.stopwords.words('english')) ## Translator APIs-

>Oxform NLP, Google Translator API 

stemmer = nltk.stem.PorterStemmer() 

 

 

def preprocess_text(text): 

    tokens = nltk.word_tokenize(text.lower()) 

    tokens = [stemmer.stem(token) for token in tokens if token.isalnum() and 

token not in stopwords] 

    return ' '.join(tokens) 

 

 

df['processed_text'] = df['text'].apply(preprocess_text) 

 

tfidf_vectorizer = TfidfVectorizer() 

X = tfidf_vectorizer.fit_transform(df['processed_text']) 

X 

 

 

svm_classifier = SVC(kernel='linear') ## Non-Linear, ReLu, Leaky ReLu, 

Logistic 

svm_classifier.fit(X, df['label']) 

 

predictions = svm_classifier.predict(X) 

predictions 

 

df['predicted_level']=predictions 
svm_classifier = SVC(kernel='linear') ## Non-Linear, ReLu, Leaky ReLu, 

Logistic 

svm_classifier.fit(X, df['label']) 

 

predictions = svm_classifier.predict(X) 

predictions 



 

df['predicted_level']=predictions 

2)import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import LabelEncoder 

from keras import Sequential 

from keras.layers import Embedding, Dense, LSTM 

from keras.preprocessing.text import one_hot 

from keras.utils import pad_sequences 

 

import nltk 

from nltk.stem.snowball import SnowballStemmer 

import regex as re 

from nltk.tokenize import sent_tokenize 

from sklearn.metrics import accuracy_score, confusion_matrix, 

classification_report 

from sklearn.model_selection import train_test_split 

import warnings 

 

warnings.filterwarnings('ignore') 

from nltk.corpus import stopwords 

 

nltk.download('stopwords') 

nltk.download('punkt') 

nltk.download('wordnet') 

stop_words = stopwords.words('english') 

 
[nltk_data] Downloading package stopwords to /root/nltk_data... 
[nltk_data]   Unzipping corpora/stopwords.zip. 
[nltk_data] Downloading package punkt to /root/nltk_data... 
[nltk_data]   Unzipping tokenizers/punkt.zip. 
[nltk_data] Downloading package wordnet to /root/nltk_data... 
addCode 
addText 

from google.colab import drive 

 

drive.mount("/content/drive", force_remount=True) 

drive.mount("/content/drive", force_remount=True) 
Mounted at /content/drive 

file_path = "/content/drive" + "/My Drive/" + "JNTUSessions/" 

file_path = "/content/drive/My Drive/JNTUSessions/" 

df_fake = pd.read_csv(file_path + "Fake.csv") 

file_path = "/content/drive/My Drive/JNTUSessions/" 

df_true = pd.read_csv(file_path + "True .csv") 

df_fake.head() 



 

title text subject date 

0 Donald Trump Sends Out Embarrassing New Year’... Donald Trump just 

couldn t wish all Americans ... News December 31, 2017 

1 Drunk Bragging Trump Staffer Started Russian ... House Intelligence 

Committee Chairman Devin Nu... News December 31, 2017 

2 Sheriff David Clarke Becomes An Internet Joke... On Friday, it was 

revealed that former Milwauk... News December 30, 2017 

3 Trump Is So Obsessed He Even Has Obama’s Name... On Christmas 

day, Donald Trump announced that ... News December 29, 2017 

4 Pope Francis Just Called Out Donald Trump Dur... Pope Francis used his 

annual Christmas Day mes... News December 25, 2017 

df_true.head() 

 
title text subject date 

0 As U.S. budget fight looms, Republicans flip t... WASHINGTON (Reuters) - 

The head of a conservat... politicsNews December 31, 2017 

1 U.S. military to accept transgender recruits o... WASHINGTON (Reuters) - 

Transgender people will... politicsNews December 29, 2017 

2 Senior U.S. Republican senator: 'Let Mr. Muell... WASHINGTON 

(Reuters) - The special counsel inv... politicsNews December 31, 2017 

3 FBI Russia probe helped by Australian diplomat... WASHINGTON 

(Reuters) - Trump campaign adviser ... politicsNews December 30, 2017 

4 Trump wants Postal Service to charge 'much mor...

 SEATTLE/WASHINGTON (Reuters) - President Donal... politicsNews

 December 29, 2017 

df_fake['status']=1 

df_true['status']=0 

df=pd.concat([df_true,df_fake]) 

df.drop(['subject', 'text', 'date'], axis=1, inplace=True) 

def logest_sentence_length(text): 

  return len(text.split()) 

 

ramdom_idexes=np.random.randint(0, len(df), len(df)) 

df = df.iloc[ramdom_idexes].reset_index(drop=True) 

 

pd.set_option('display.max_colwidth', 500) 

random = np.random.randint(0, len(df), 20) 

df.iloc[random] 

 

df.isnull().sum() 



 

df['maximum_length']=df['title'].apply(lambda x: logest_sentence_length(x)) 

max_length = max(df['maximum_length'].values) 

max_length 

 

text_cleaning = "\b0\S*|\b[^A-Za-z0-9]+" 

 

def preprocess_filter(text, stem=False): 

  text = re.sub(text_cleaning, " ", str(text.lower()).strip()) 

  tokens = [] 

  for token in text.split(): 

    if token not in stop_words: 

      if stem: 

        stemmer = SnowballStemmer(language='english') 

        token = stemmer.stem(token) 

      tokens.append(token) 

  return " ".join(tokens) 

 

def one_hot_encoded (text, vocab_size=5000, max_length=40): 

  hot_encodeded = one_hot(text, vocab_size) 

  return hot_encodeded 

 

def word_embedding(text): 

  preprocessed_text=preprocess_filter(text) 

  hot_encoded=one_hot_encoded(preprocessed_text) 

  return hot_encoded 

 

embedded_features = 40 

model = Sequential() 

model.add(Embedding(5000,embedded_features,input_length=max_length)) 

model.add(LSTM(100)) 

model.add(Dense(1,activation='sigmoid')) 

model.compile(loss = 'binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) 
 

model.summary() 
 

Model: "sequential" 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================

= 

 embedding (Embedding)       (None, 42, 40)            200000     

                                                                  



 lstm (LSTM)                 (None, 100)               56400      

                                                                  

 dense (Dense)               (None, 1)                 101        

                                                                  

================================================================

= 

Total params: 256501 (1001.96 KB) 

Trainable params: 256501 (1001.96 KB) 

Non-trainable params: 0 (0.00 Byte) 

_________________________________________________________________ 

[36] 

5m 

one_hot_encoded_title=df['title'].apply(lambda x : word_embedding(x)).values 

padded_encoded_title = pad_sequences(one_hot_encoded_title, 

maxlen=max_length,padding = "pre") 

X = padded_encoded_title 

Y = df['status'].values 

Y = np.array(Y) 

 

X.shape 

 

 

Y.shape 

 

X_train, X_test, Y_train, Y_test=train_test_split(X, Y, random_state=42) 

 

model.fit(X_train,Y_train,validation_data=(X_test, Y_test), epochs=5, 

batch_size=64) 

 

def best_threshold_value(thresholds:list, X_test): 

  accuracies = [] 



  for thresh in thresholds: 

    ypred=model.predict(X_test) 

    ypred = np.where(ypred > thresh,1,0) 

    accuracies.append(accuracy_score(Y_test, ypred)) 

  return pd.DataFrame({ 

      'Threshold' : thresholds, 

      'Accuracy'  :  accuracies 

  }) 

 

 

best_threshold_value([0.4, 0.5, 0.6, 0.7, 0.8, 0.9], X_test) 

 

 

Y_pred=model.predict(X_test) 

Y_pred=np.where(Y_pred > 0.5, 1, 0) 

 

 

 

confusion_matrix(Y_pred, Y_test) 

 

classification_report(Y_pred, Y_test) 

Epoch 1/5 
527/527 [==============================] - 50s 89ms/step - loss: 0.2088 - 
accuracy: 0.9156 - val_loss: 0.1258 - val_accuracy: 0.9521 
Epoch 2/5 
527/527 [==============================] - 42s 79ms/step - loss: 0.0831 - 
accuracy: 0.9696 - val_loss: 0.1130 - val_accuracy: 0.9604 
Epoch 3/5 
527/527 [==============================] - 42s 80ms/step - loss: 0.0483 - 
accuracy: 0.9836 - val_loss: 0.1121 - val_accuracy: 0.9620 
Epoch 4/5 
527/527 [==============================] - 43s 81ms/step - loss: 0.0282 - 
accuracy: 0.9909 - val_loss: 0.1317 - val_accuracy: 0.9653 
Epoch 5/5 
527/527 [==============================] - 41s 77ms/step - loss: 0.0190 - 
accuracy: 0.9938 - val_loss: 0.1448 - val_accuracy: 0.9662 



351/351 [==============================] - 6s 15ms/step 
351/351 [==============================] - 5s 13ms/step 
351/351 [==============================] - 5s 15ms/step 
351/351 [==============================] - 4s 12ms/step 
351/351 [==============================] - 5s 13ms/step 
351/351 [==============================] - 5s 15ms/step 
351/351 [==============================] - 5s 13ms/step 
' 
              precision    recall  f1-score   support\n\n           0       0.97      0.96      0.96      
5403\n           1       0.97      0.97      0.97      5822\n\n    accuracy                           0.9
7     11225\n   macro avg       0.97      0.97      0.97     11225\nweighted avg       0.97      
0.97      0.97     11225\n 

 

 

 

 

def prediction_input_processing(text): 

  encoded=word_embedding(text) 

  padded_encoded_title=pad_sequences([encoded], maxlen=max_length, 

padding='pre') 

  output=model.predict(padded_encoded_title) 

  output=np.where(0.5>output,1,0) 

  if output[0][0] == 1: 

    return 'The News is Fake' 

  return 'The News is True' 

 

news_str1="Americans are more concerned over Indian fake open source 

contributions" 

news_str2="Trump Just Sent Michelle Obama a Bill She will Never Be able to 

pay in her lifetime" 

news_str3="Donald Trump Sends Out Embarrassing New Year’s Eve Message" 

prediction_input_processing(news_str3) 
 

1/1 [==============================] - 0s 51ms/step 
' 
The News is True 

 


