
 Assignment – 16

You are tasked with developing a Python code for sentiment extraction

utilizing a

provided sample dataset. The dataset consists of textual data annotated with

labels categorizing sentiments into four categories: "rude," "normal," "insult,"

and

"sarcasm."

Dataset:

● Real News:

https://drive.google.com/file/d/1FL2HqgLDAP5550nd1h_8iBhAV

ISTnzr/view?usp=sharing

● Fake News:

https://drive.google.com/file/d/1EdI_HyUeI_Fi2nld7rQnnGEpQqn_BwM

/view? usp=sharing

1. Outline the key steps involved in developing a sentiment extraction

Algorithm using Python.

2. Describe the structure and format of the sample dataset required for

Sentiment extraction.

3. Implement the Python code to read and pre-process the sample dataset for

Sentiment analysis. Ensure that the code correctly handles text data and

Labels.

4. Discuss the process of classifying sentiments into the specified categories:

"Rude," "normal," "insult," and "sarcasm." Explain any techniques or

Algorithms employed for this classification task.

5. Evaluate the effectiveness of the sentiment extraction algorithm on the

Provided sample dataset. Consider metrics such as accuracy, precision,

Recall, and F1-score.

6. Propose potential enhancements or modifications to improve the

Performance of the sentiment extraction algorithm. Justify your

Recommendations.

7. Reflect on the ethical considerations associated with sentiment analysis,

Particularly regarding privacy, bias, and potential misuse of extracted

Sentiments.

8. Write a complete code for this assignment.

Developing a sentiment extraction algorithm using Python involves several key

steps. Here is an outline of those steps:

 Data Collection: Gather a dataset with labeled sentiment data, including a variety

of text samples with corresponding sentiment labels (positive, negative, neutral).

 Data Preprocessing: Clean and preprocess the text data by removing punctuation,

converting to lowercase, removing stopwords, and handling any other necessary text

transformations.

Feature Extraction: Convert the preprocessed text data into numerical feature

vectors that can be fed into a machine learning model. Common techniques for

feature extraction include bag-of-words, TF-IDF, or word embeddings like Word2Vec

or GloVe.

 Model Selection: Choose an appropriate machine learning algorithm for sentiment

analysis such as Logistic Regression, Naive Bayes, Support Vector Machines, or

more advanced deep learning models like Recurrent Neural Networks (RNN) or

Convolutional Neural Networks (CNN).

 Model Training: Split your dataset into training and testing sets. Use the training

set to train your sentiment extraction model by fitting it to the feature vectors and

corresponding sentiment labels.

 Model Evaluation: Evaluate the performance of your sentiment extraction model

using the testing set. Common evaluation metrics for sentiment analysis include

accuracy, precision, recall, and F1-score.

 Fine-tuning and Optimization: Iterate on your model by fine-tuning

hyperparameters, exploring different feature extraction techniques or model

architectures, and experimenting with data augmentation or ensemble methods to

improve performance.

Deployment: Once you are satisfied with the performance of your sentiment

extraction algorithm, deploy it in a production environment. This could involve

creating APIs or integrating it into a larger application.

The structure and format of a sample dataset required for sentiment extraction can

vary, but it typically consists of two main components:

1. Text Data: The dataset should include a collection of text samples or documents

on which sentiment analysis will be performed. Each text sample represents a piece

of content (such as reviews, tweets, comments, or product descriptions) that

expresses opinions or sentiments.

2. Sentiment Labels: Along with the text data, the dataset should also include

sentiment labels associated with each text sample. These labels indicate the

sentiment expressed in the corresponding text, such as positive, negative, or neutral.

Sometimes, sentiment labels are represented as numerical values (e.g., 0 for

negative, 1 for neutral, and 2 for positive).

Here is an example of how the dataset might be organized in a tabular format:

| Text Data | Sentiment Label |

|---------------------|-----------------|

| I loved the movie! | Positive |

| This book is boring.| Negative |

| The product is okay.| Neutral |

| Fantastic experience| Positive |

| Disappointed with the service | Negative |

In this sample dataset, each row represents a text sample, and the corresponding

sentiment label indicates the sentiment expressed in the text. This structure allows

the sentiment extraction algorithm to learn patterns and make predictions based on

the text and sentiment relationship.

It's worth noting that datasets for sentiment extraction can vary in size, domain, and

annotation quality. It is essential to ensure that the dataset is representative and

sufficiently labeled to train an effective sentiment extraction algorithm.

import pandas as pd

import re

import nltk

from nltk.corpus import stopwords

from sklearn.model_selection import train_test_split

Read the dataset into a pandas DataFrame

df = pd.read_csv('sample_dataset.csv') # Replace 'sample_dataset.csv' with

the actual file name

Preprocessing steps

def preprocess_text(text):

 # Remove special characters and numbers

 text = re.sub('[^a-zA-Z]', ' ', text)

 # Convert text to lowercase

 text = text.lower()

 # Tokenize the text

 tokens = nltk.word_tokenize(text)

 # Remove stopwords

 stop_words = set(stopwords.words('english'))

 tokens = [token for token in tokens if token not in stop_words]

 # Join the tokens back into a single string

 preprocessed_text = ' '.join(tokens)

 return preprocessed_text

Preprocess the text data

df['preprocessed_text'] = df['text'].apply(preprocess_text)

Split the data into train and test sets

train_data, test_data, train_labels, test_labels =

train_test_split(df['preprocessed_text'], df['label'], test_size=0.2,

random_state=42)

Further processing or model training can be performed on the preprocessed

data

Classifying Sentiment: Rude, Normal, Insult, and Sarcasm

Sentiment analysis, also known as opinion mining, aims to understand the emotional
tone behind text data. Classifying sentiment into specific categories like "rude,"
"normal," "insult," and "sarcasm" can be challenging due to the nuances of human
language. Here's a breakdown of the process and techniques used:

1. Data Preprocessing:

• Text Cleaning: Removing noise like punctuation, stop words (common words
like "the" or "a"), and converting text to lowercase is essential.

• Lemmatization/Stemming: Reducing words to their base form (e.g.,
"running" becomes "run") improves consistency.

2. Feature Engineering:

• Lexicon-based Approach: Words are assigned sentiment scores based on
pre-built sentiment lexicons (lists of words with positive, negative, or neutral
sentiment).

• N-grams: Analyzing sequences of words (bigrams, trigrams) can capture
context. "Great job" is positive, but "big mistake" is negative.

3. Machine Learning Models:

• Supervised Learning:
o Training data with labeled examples (e.g., a sentence marked as

"rude") is fed to models like Support Vector Machines (SVMs) or Naive
Bayes.

o The model learns to identify patterns associated with each sentiment
category.

• Deep Learning: Advanced techniques like Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks can analyze the
sequence of words and context more effectively, especially for sarcasm
detection.

Challenges of Classifying Specific Categories:

• Subjectivity: "Rude" can be subjective. "That was a bold choice" might be
rude depending on context.

• Sarcasm: Identifying sarcasm requires understanding the context and often
relies on nonverbal cues like tone of voice, which text lacks.

o Techniques like identifying inconsistencies between the literal meaning
and the sentiment expressed, or the use of exclamation points (!) and
question marks (?) can help.

Additional Techniques:

• Emojis and Sentiment Analysis: Emojis can convey strong sentiment.
Sentiment lexicons can be expanded to include emojis with positive or
negative connotations.

• Hybrid Approaches: Combining lexicon-based methods with machine
learning can improve accuracy.

Overall, sentiment classification is an evolving field. While models can achieve good
accuracy for basic sentiment (positive, negative, neutral), identifying nuances like
rudeness and sarcasm requires ongoing development and consideration of context.

Evaluating Sentiment Extraction Algorithm with "Rude," "Normal," "Insult,"
and "Sarcasm" Labels

Here's how to evaluate the effectiveness of the sentiment extraction algorithm on
your dataset:

Metrics:

• Accuracy: Overall percentage of correctly classified samples across all
categories ("rude," "normal," "insult," and "sarcasm").

• Precision: For each sentiment category, the proportion of samples the
algorithm classified as that category that actually belong to that category
(avoiding false positives).

• Recall: For each sentiment category, the proportion of samples that actually
belong to that category that the algorithm correctly classified (avoiding false
negatives).

• F1-score: Harmonic mean of precision and recall, combining both metrics into
a single score.

Evaluation Process:

1. Split the dataset: Divide your data into a training set (used to train the
algorithm) and a testing set (used to evaluate its performance).

2. Train the model: Train your sentiment extraction algorithm on the training
set.

3. Evaluate on the testing set: Make predictions on the testing set using the
trained model.

4. Calculate evaluation metrics: Using the ground truth labels (actual
sentiment) and the model's predictions on the testing set, calculate accuracy,
precision, recall, and F1-score for each category ("rude," "normal," "insult,"
and "sarcasm").

Challenges:

• Balanced Dataset: The effectiveness of these metrics depends on a
balanced dataset. If most data belongs to the "normal" category, the model
might achieve high overall accuracy but struggle with less frequent categories
like "insult" or "sarcasm." Analyze precision and recall for each category to
identify potential weaknesses.

• Class Imbalance Techniques: If the dataset is imbalanced, consider using
techniques like oversampling (replicating data from the minority class) or
under sampling (removing data from the majority class) to create a more
balanced training set.

Interpretation:

• A high accuracy score indicates the model performs well overall.
• High precision for a category like "insult" means the model rarely misclassifies

other types of text as insults (reducing false positives).
• High recall for "sarcasm" means the model identifies most sarcastic

comments (reducing false negatives).
• F1-score provides a balanced view of precision and recall.

Additional Considerations:

• Error Analysis: Analyse the types of errors the model makes to understand
its weaknesses. Are there specific types of sarcasm it struggles with? Does it
misclassify neutral comments as rude?

• Visualization Techniques: Consider using confusion matrices to visualize
how the model performed on each category classification.

By evaluating sentiment extraction algorithm using these metrics and considering the
challenges, you can gain valuable insights into its effectiveness for classifying "rude,"
"normal," "insult," and "sarcasm" sentiments in your specific dataset.

To improve the performance of the sentiment extraction algorithm, we can
consider the following potential enhancements or modifications:

1. Integration of Domain-specific Language Models:
Incorporating domain-specific language models such as specialized sentiment
lexicons or dictionaries can enhance the algorithm's understanding of industry-
specific language nuances and sentiment expressions. By integrating domain-
specific knowledge, the algorithm can more accurately classify sentiments within the
context of the target domain.

2. Fine-tuning Pretrained Language Models:
Fine-tuning pretrained language models like BERT, RoBERTa, or ALBERT on
domain-specific datasets can improve the algorithm's performance by adapting to the
specific sentiment patterns and vocabulary of the target domain. Fine-tuning allows
the model to capture domain-specific sentiment nuances and context, leading to
more accurate sentiment extraction.

3. Data Augmentation Techniques:
Augmenting the training data through techniques like back translation, synonym
replacement, or data synthesis can increase the diversity and quantity of training
examples. By exposing the algorithm to a wider range of sentiment expressions,
data augmentation can improve the model's ability to generalize and accurately
classify sentiments in real-world text.

4. Ensemble Learning:
Implementing ensemble learning techniques such as bagging, boosting, or model
stacking can enhance the robustness and generalization capability of the sentiment
extraction algorithm. By combining multiple sentiment classifiers or models,

ensemble methods can mitigate individual model biases and errors, leading to
improved sentiment classification performance.

5. Attention Mechanisms:
Leveraging attention mechanisms in neural network architectures can allow the
algorithm to focus on critical words or phrases that contribute most to sentiment
classification decisions. Attention mechanisms help the model capture important
sentiment-bearing tokens and dependencies, improving the interpretability and
performance of sentiment extraction.

6. Multi-task Learning:
Employing multi-task learning by training the sentiment extraction model on related
tasks such as sentiment intensity prediction or aspect-based sentiment analysis can
lead to a more holistic understanding of text sentiment. By jointly optimizing multiple
sentiment-related objectives, the algorithm can capture nuanced sentiment
information and improve overall sentiment classification accuracy.

7. Active Learning:
Implementing active learning strategies to iteratively select and label the most
informative data points can enhance the efficiency and effectiveness of sentiment
extraction model training. By prioritizing the annotation of crucial data samples,
active learning can facilitate the algorithm's learning process and improve sentiment
classification performance with limited labeled data.

By incorporating these enhancements and modifications, we can enhance the
sentiment extraction algorithm's performance by leveraging domain-specific
knowledge, fine-tuning models, augmenting data, utilizing ensemble methods,
attention mechanisms, multi-task learning, and active learning techniques. These
strategies can collectively improve the algorithm's accuracy, robustness, and
generalization capability in sentiment analysis tasks.

Sentiment analysis, like any other AI technology, raises important ethical

considerations that need to be carefully addressed. Let's reflect on the key ethical

considerations associated with sentiment analysis:

1. Privacy: Sentiment analysis often requires access to large amounts of personal

data, which can include sensitive information. It is crucial to respect individuals'

privacy rights by obtaining informed consent, anonymizing data, and ensuring secure

storage and transmission of data. Transparent privacy policies and adherence to

data protection regulations are imperative to maintain trust.

2. Bias: Bias in sentiment analysis can arise from various sources, such as biased

training data, algorithmic design, or societal prejudices. Biased sentiment analysis

systems may perpetuate discrimination, reinforce stereotypes, or produce unfair

outcomes. Regular auditing and diverse representation in the development of

sentiment analysis models can help mitigate bias and ensure more equitable results.

3. Data source representation: Sentiment analysis models heavily rely on training

data. If the training data is unrepresentative or lacks diversity, the model may fail to

capture sentiments from different demographic groups, cultural backgrounds, or

languages. Efforts should focus on collecting diverse and inclusive datasets that

accurately represent the intended user base.

4. Transparency and explainability: The opacity of sentiment analysis algorithms

can lead to concerns about accountability and fairness. Organizations should strive

for transparency in disclosing the methodology, training data sources, and limitations

of sentiment analysis systems. Providing explanations for the sentiment predictions

can help users understand and evaluate the validity of the results.

5. Misuse of extracted sentiments: Sentiment analysis can have unintended

consequences if the extracted sentiments are misused. It is essential to use

sentiment analysis responsibly and ethically, respecting the privacy and well-being of

individuals. Safeguards should be in place to prevent the misuse of sentiment

analysis for purposes such as manipulating public opinion, fueling discrimination, or

infringing on people's rights.

Addressing these ethical considerations requires collaborative efforts between

developers, researchers, policymakers, and the wider community. Striving for

transparency, fairness, inclusivity, and ongoing monitoring of sentiment analysis

systems can help mitigate potential ethical risks and ensure that sentiment analysis

is used in a responsible and beneficial manner.

Coding part for the given files:

1)pip install nltk scikit-learn pandas pip install nltk scikit-learn pandas

Import all the Libraries

import nltk

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.svm import SVC

from sklearn.metrics import classification_report

nltk.download("punkt") ##Fucntion: Smilies

nltk.download("stopwords") ##Function: Build Customed Stopwords:: Specific

to Domain

from google.colab import drive

drive.mount("/content/drive", force_remount=True)

file_path="/content/drive"+"/My Drive/"+ "JNTUSessions/Fake.csv"

data = pd.read_csv(file_path)

data.head()

df = pd.DataFrame(data) ## etl():: AWS, Facebook, X, GCP

df

 title text subject date

0
Donald Trump Sends

Out Embarrassing
New Year’...

Donald Trump just
couldn t wish all

Americans ...
News

December
31, 2017

1
Drunk Bragging

Trump Staffer Started
Russian ...

House Intelligence
Committee Chairman

Devin Nu...
News

December
31, 2017

2
Sheriff David Clarke

Becomes An Internet
Joke...

On Friday, it was
revealed that former

Milwauk...
News

December
30, 2017

3
Trump Is So

Obsessed He Even
Has Obama’s Name...

On Christmas day,
Donald Trump

announced that ...
News

December
29, 2017

4
Pope Francis Just
Called Out Donald

Trump Dur...

Pope Francis used his
annual Christmas Day

mes...
News

December
25, 2017

...

23476
McPain: John McCain

Furious That Iran
Treated ...

21st Century Wire says
As 21WIRE reported

earl...

Middle-
east

January 16,
2016

23477
JUSTICE? Yahoo

Settles E-mail Privacy
Class-ac...

21st Century Wire says
It s a familiar theme. ...

Middle-
east

January 16,
2016

23478
Sunnistan: US and

Allied ‘Safe Zone’
Plan to T...

Patrick Henningsen
21st Century

WireRemember ...

Middle-
east

January 15,
2016

 title text subject date

23479
How to Blow $700
Million: Al Jazeera

America F...

21st Century Wire says
Al Jazeera America

will...

Middle-
east

January 14,
2016

23480
10 U.S. Navy Sailors

Held by Iranian
Military ...

21st Century Wire says
As 21WIRE predicted

in ...

Middle-
east

January 12,
2016

23481 rows × 4 columns

stopwords = set(nltk.corpus.stopwords.words('english')) ## Translator APIs-

>Oxform NLP, Google Translator API

stemmer = nltk.stem.PorterStemmer()

def preprocess_text(text):

 tokens = nltk.word_tokenize(text.lower())

 tokens = [stemmer.stem(token) for token in tokens if token.isalnum() and

token not in stopwords]

 return ' '.join(tokens)

df['processed_text'] = df['text'].apply(preprocess_text)

tfidf_vectorizer = TfidfVectorizer()

X = tfidf_vectorizer.fit_transform(df['processed_text'])

X

svm_classifier = SVC(kernel='linear') ## Non-Linear, ReLu, Leaky ReLu,

Logistic

svm_classifier.fit(X, df['label'])

predictions = svm_classifier.predict(X)

predictions

df['predicted_level']=predictions
svm_classifier = SVC(kernel='linear') ## Non-Linear, ReLu, Leaky ReLu,

Logistic

svm_classifier.fit(X, df['label'])

predictions = svm_classifier.predict(X)

predictions

df['predicted_level']=predictions

2)import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import LabelEncoder

from keras import Sequential

from keras.layers import Embedding, Dense, LSTM

from keras.preprocessing.text import one_hot

from keras.utils import pad_sequences

import nltk

from nltk.stem.snowball import SnowballStemmer

import regex as re

from nltk.tokenize import sent_tokenize

from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report

from sklearn.model_selection import train_test_split

import warnings

warnings.filterwarnings('ignore')

from nltk.corpus import stopwords

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

stop_words = stopwords.words('english')

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.
[nltk_data] Downloading package wordnet to /root/nltk_data...
addCode
addText

from google.colab import drive

drive.mount("/content/drive", force_remount=True)

drive.mount("/content/drive", force_remount=True)
Mounted at /content/drive

file_path = "/content/drive" + "/My Drive/" + "JNTUSessions/"

file_path = "/content/drive/My Drive/JNTUSessions/"

df_fake = pd.read_csv(file_path + "Fake.csv")

file_path = "/content/drive/My Drive/JNTUSessions/"

df_true = pd.read_csv(file_path + "True .csv")

df_fake.head()

title text subject date

0 Donald Trump Sends Out Embarrassing New Year’... Donald Trump just

couldn t wish all Americans ... News December 31, 2017

1 Drunk Bragging Trump Staffer Started Russian ... House Intelligence

Committee Chairman Devin Nu... News December 31, 2017

2 Sheriff David Clarke Becomes An Internet Joke... On Friday, it was

revealed that former Milwauk... News December 30, 2017

3 Trump Is So Obsessed He Even Has Obama’s Name... On Christmas

day, Donald Trump announced that ... News December 29, 2017

4 Pope Francis Just Called Out Donald Trump Dur... Pope Francis used his

annual Christmas Day mes... News December 25, 2017

df_true.head()

title text subject date

0 As U.S. budget fight looms, Republicans flip t... WASHINGTON (Reuters) -

The head of a conservat... politicsNews December 31, 2017

1 U.S. military to accept transgender recruits o... WASHINGTON (Reuters) -

Transgender people will... politicsNews December 29, 2017

2 Senior U.S. Republican senator: 'Let Mr. Muell... WASHINGTON

(Reuters) - The special counsel inv... politicsNews December 31, 2017

3 FBI Russia probe helped by Australian diplomat... WASHINGTON

(Reuters) - Trump campaign adviser ... politicsNews December 30, 2017

4 Trump wants Postal Service to charge 'much mor...

 SEATTLE/WASHINGTON (Reuters) - President Donal... politicsNews

 December 29, 2017

df_fake['status']=1

df_true['status']=0

df=pd.concat([df_true,df_fake])

df.drop(['subject', 'text', 'date'], axis=1, inplace=True)

def logest_sentence_length(text):

 return len(text.split())

ramdom_idexes=np.random.randint(0, len(df), len(df))

df = df.iloc[ramdom_idexes].reset_index(drop=True)

pd.set_option('display.max_colwidth', 500)

random = np.random.randint(0, len(df), 20)

df.iloc[random]

df.isnull().sum()

df['maximum_length']=df['title'].apply(lambda x: logest_sentence_length(x))

max_length = max(df['maximum_length'].values)

max_length

text_cleaning = "\b0\S*|\b[^A-Za-z0-9]+"

def preprocess_filter(text, stem=False):

 text = re.sub(text_cleaning, " ", str(text.lower()).strip())

 tokens = []

 for token in text.split():

 if token not in stop_words:

 if stem:

 stemmer = SnowballStemmer(language='english')

 token = stemmer.stem(token)

 tokens.append(token)

 return " ".join(tokens)

def one_hot_encoded (text, vocab_size=5000, max_length=40):

 hot_encodeded = one_hot(text, vocab_size)

 return hot_encodeded

def word_embedding(text):

 preprocessed_text=preprocess_filter(text)

 hot_encoded=one_hot_encoded(preprocessed_text)

 return hot_encoded

embedded_features = 40

model = Sequential()

model.add(Embedding(5000,embedded_features,input_length=max_length))

model.add(LSTM(100))

model.add(Dense(1,activation='sigmoid'))

model.compile(loss = 'binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

model.summary()

Model: "sequential"

 Layer (type) Output Shape Param #

==

=

 embedding (Embedding) (None, 42, 40) 200000

 lstm (LSTM) (None, 100) 56400

 dense (Dense) (None, 1) 101

==

=

Total params: 256501 (1001.96 KB)

Trainable params: 256501 (1001.96 KB)

Non-trainable params: 0 (0.00 Byte)

[36]

5m

one_hot_encoded_title=df['title'].apply(lambda x : word_embedding(x)).values

padded_encoded_title = pad_sequences(one_hot_encoded_title,

maxlen=max_length,padding = "pre")

X = padded_encoded_title

Y = df['status'].values

Y = np.array(Y)

X.shape

Y.shape

X_train, X_test, Y_train, Y_test=train_test_split(X, Y, random_state=42)

model.fit(X_train,Y_train,validation_data=(X_test, Y_test), epochs=5,

batch_size=64)

def best_threshold_value(thresholds:list, X_test):

 accuracies = []

 for thresh in thresholds:

 ypred=model.predict(X_test)

 ypred = np.where(ypred > thresh,1,0)

 accuracies.append(accuracy_score(Y_test, ypred))

 return pd.DataFrame({

 'Threshold' : thresholds,

 'Accuracy' : accuracies

 })

best_threshold_value([0.4, 0.5, 0.6, 0.7, 0.8, 0.9], X_test)

Y_pred=model.predict(X_test)

Y_pred=np.where(Y_pred > 0.5, 1, 0)

confusion_matrix(Y_pred, Y_test)

classification_report(Y_pred, Y_test)

Epoch 1/5
527/527 [==============================] - 50s 89ms/step - loss: 0.2088 -
accuracy: 0.9156 - val_loss: 0.1258 - val_accuracy: 0.9521
Epoch 2/5
527/527 [==============================] - 42s 79ms/step - loss: 0.0831 -
accuracy: 0.9696 - val_loss: 0.1130 - val_accuracy: 0.9604
Epoch 3/5
527/527 [==============================] - 42s 80ms/step - loss: 0.0483 -
accuracy: 0.9836 - val_loss: 0.1121 - val_accuracy: 0.9620
Epoch 4/5
527/527 [==============================] - 43s 81ms/step - loss: 0.0282 -
accuracy: 0.9909 - val_loss: 0.1317 - val_accuracy: 0.9653
Epoch 5/5
527/527 [==============================] - 41s 77ms/step - loss: 0.0190 -
accuracy: 0.9938 - val_loss: 0.1448 - val_accuracy: 0.9662

351/351 [==============================] - 6s 15ms/step
351/351 [==============================] - 5s 13ms/step
351/351 [==============================] - 5s 15ms/step
351/351 [==============================] - 4s 12ms/step
351/351 [==============================] - 5s 13ms/step
351/351 [==============================] - 5s 15ms/step
351/351 [==============================] - 5s 13ms/step
'
 precision recall f1-score support\n\n 0 0.97 0.96 0.96
5403\n 1 0.97 0.97 0.97 5822\n\n accuracy 0.9
7 11225\n macro avg 0.97 0.97 0.97 11225\nweighted avg 0.97
0.97 0.97 11225\n

def prediction_input_processing(text):

 encoded=word_embedding(text)

 padded_encoded_title=pad_sequences([encoded], maxlen=max_length,

padding='pre')

 output=model.predict(padded_encoded_title)

 output=np.where(0.5>output,1,0)

 if output[0][0] == 1:

 return 'The News is Fake'

 return 'The News is True'

news_str1="Americans are more concerned over Indian fake open source

contributions"

news_str2="Trump Just Sent Michelle Obama a Bill She will Never Be able to

pay in her lifetime"

news_str3="Donald Trump Sends Out Embarrassing New Year’s Eve Message"

prediction_input_processing(news_str3)

1/1 [==============================] - 0s 51ms/step
'
The News is True

