Question 1:

Number game between user and computer. The user starts by entering either 1 or 2 or 3 digits
starting from 1 sequentially. The computer can return either 1 or 2 or 3 next digits in sequence,
starting from the max number played by the user. User enters the next 1 or 2 or 3 next digits in
sequence, starting from the max number played by the computer. Whoever reaches 20 first wins the
game.

Note:
- the numbers should be in sequence starting from 1.
- minimum number user or computer should pick is at least 1 digit in sequence

- maximum number user or computer can pick only 3 digits in sequence

import random

def gettinginput(maxnum):
while True:
userinput = input("Player : ")
numbers = list(map(int, userinput.split()))
if all(num in range(maxnum, maxnum + 4) for num in numbers) and 1 <= len(numbers) <= 3:
return numbers

print("Invalid input. Please try again.")

def computerinput(maxnum):
numtoplay = random.randint(1, 3)
numbers = list(range(maxnum, maxnum + numtoplay))
print(f"Computer played: {numbers}")

return numbers

def main():

maxnum =1

while maxnum <= 20:

usernum = gettinginput(maxnum)

maxnum += len(usernum)

if maxnum >= 20:

print("Player Wins!!!")

break

computernum = computerinput(maxnum)

maxnum += len(computernum)

if maxnum >= 20:

print("Computer Wins!!!")

break

main()

OUTPUT:

Player
Computer
Player
Computer
Player
Computer
Player
Computer
Player
Computer
Player

12

played:

5

played:

9

played:

11 12

played:

16

played:

19 20

Player Wins!!!

QUESTION 2:

Develop a function called ncr(n,r) which computes r-combinations of n-distinct object . use this
function to print pascal triangle, where number of rows is the input

def ncr(n, r):
ifr>norr<0:
return 0

return factorial(n) // (factorial(r) * factorial(n - r))

def factorial(n):
ifn==00rn==
return 1
result=1
foriinrange(2, n+1):
result *=i

return result

def print_pascal_triangle(rows):
foriin range(rows):
forjinrange(i + 1):
print(ncr(i, j), end=""

print()

rows = int(input("Enter the number of rows for Pascal's triangle: "))

print_pascal_triangle(rows)

OUTPUT:

i et A el e e B i e

Enter the number of rows for Pascal's triangle: 6

[R R
G L B

QUESTION 3:

Read a list of n numbers during runtime. Write a Python program to print the repeated elements
with frequency count in a list.

def count_frequencies(numbers)
frequency = {}
for num in numbers:
if num in frequency:
frequency[num] +=1
else:
frequency[num] =1
return frequency
def print_repeated_elements(frequency):
for num, count in frequency.items():
print(f"Element {num} has come {count} times")
n = int(input("Enter the number of elements: "))
numbers =[]
print("Enter the numbers :")
for _in range(n):
number = int(input())
numbers.append(number)
frequency = count_frequencies(numbers)
print_repeated_elements(frequency)
OUTPUT:

Enter the number of elements: 7
Enter the numbers :

1
2
3
4
3
2
2
Element 1 has come 1 times
Element 2 has come 3 times
Element 3 has come 2 times
Element 4 has come 1 times

QUESTION 4:

Develop a python code to read matric A of order 2X2 and Matrix B of order 2X2 from a file and
perform the addition of Matrices A & B and Print the results

with open("matrices,txt", 'r') as file:
lines = file.readlines()
A = [[int(num) for num in lines[0].strip().split()],
[int(num) for num in lines[1].strip().split()]]
B = [[int(num) for num in lines[2].strip().split()],

[int(num) for num in lines[3].strip().split()]]

def add_matrices(A, B):
return [[A[0][O] + B[0][0], A[O][1] + B[O][1]],

[A[1][0] + B[1][0], A[1][1] + B[1][1]]]

def print_matrix(matrix):
for row in matrix:

print(" ".join(map(str, row)))
filename = 'matrices.txt'

A, B = read_matrices(filename)
result = add_matrices(A, B)
print("Result of A + B:")

print_matrix(result)

OUTPUT:

Result of A + B:
g3 2
7 9

Matrices.txt

QUESTION 5:
Write a program that overloads the + operator so that it can add two objects of the class Fraction.

Fraction can be considered of the for P/Q where P is the numerator and Q is the denominator

class Fraction:
def __init__ (self, numerator, denominator):
if denominator == 0:
raise ValueError("Denominator cannot be zero.")
self.numerator = numerator
self.denominator = denominator

self.simplify()

def simplify(self):
def gcd(a, b):
while b:
a,b=b,a%b

return abs(a)

common_divisor = gcd(self.numerator, self.denominator)
self.numerator //= common_divisor
self.denominator //= common_divisor
if self.denominator < O:
self.numerator = -self.numerator

self.denominator = -self.denominator

def _add__(self, other):
if not isinstance(other, Fraction):
return NotImplemented
new_numerator = (self.numerator * other.denominator) + (other.numerator * self.denominator)

new_denominator = self.denominator * other.denominator

return Fraction(new_numerator, new_denominator)

f1 = Fraction(1, 2)
f2 = Fraction(1, 4)
result = f1 + 2

print(f"{result.numerator}/{result.denominator}")

OUTPUT:

— Ll LORANL
3/4

