
Natural Language Processing (NLP) is a branch of Data Science which deals with Text data.

Apart from numerical data, Text data is available to a great extent which is used to analyze and

solve business problems. But before using the data for analysis or prediction, processing the data

is important.

To prepare the text data for the model building we perform text preprocessing. It is the very first

step of NLP projects. Some of the preprocessing steps are:

 Removing punctuations like . , ! $() * % @

 Removing URLs

 Removing Stop words

 Lower casing

 Tokenization

 Stemming

 Lemmatization

We need to use the required steps based on our dataset. In this article, we will use SMS Spam

data to understand the steps involved in Text Preprocessing in NLP.

Let’s start by importing the pandas library and reading the data.

Punctuation Removal:

In this step, all the punctuations from the text are removed. string library of Python contains

some pre-defined list of punctuations such as ‘!”#$%&'()*+,-./:;?@[\]^_`{|}~’

#library that contains punctuation

import string

string.punctuation

#defining the function to remove punctuation

def remove_punctuation(text):

 punctuationfree="".join([i for i in text if i not in string.punctuation])

 return punctuationfree

#storing the puntuation free text

data['clean_msg']= data['v2'].apply(lambda x:remove_punctuation(x))

data.head()

Lowering the text:

It is one of the most common text preprocessing Python steps where the text is converted into the

same case preferably lower case. But it is not necessary to do this step every time you are

working on an NLP problem as for some problems lower casing can lead to loss of information.

For example, if in any project we are dealing with the emotions of a person, then the words

written in upper cases can be a sign of frustration or excitement.

data['msg_lower']= data['clean_msg'].apply(lambda x: x.lower())

Output: All the text of clean_msg column are converted into lower case and stored in

msg_lower column

Stop word removal:

Stopwords are the commonly used words and are removed from the text as they do not add any

value to the analysis. These words carry less or no meaning.

NLTK library consists of a list of words that are considered stopwords for the English language.

Some of them are : [i, me, my, myself, we, our, ours, ourselves, you, you’re, you’ve, you’ll,

you’d, your, yours, yourself, yourselves, he, most, other, some, such, no, nor, not, only, own,

same, so, then, too, very, s, t, can, will, just, don, don’t, should, should’ve, now, d, ll, m, o, re,

ve, y, ain, aren’t, could, couldn’t, didn’t, didn’t]

But it is not necessary to use the provided list as stopwords as they should be chosen wisely

based on the project. For example, ‘How’ can be a stop word for a model but can be important

for some other problem where we are working on the queries of the customers. We can create a

customized list of stop words for different problems.

#importing nlp library

import nltk

#Stop words present in the library

stopwords = nltk.corpus.stopwords.words('english')

stopwords[0:10]

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you',

"you're"]

#defining the function to remove stopwords from tokenized text

def remove_stopwords(text):

 output= [i for i in text if i not in stopwords]

 return output

#applying the function

data['no_stopwords']= data['msg_tokenied'].apply(lambda

x:remove_stopwords(x))

Output: Stop words that are present in the nltk library such as in, until, to, I, here are removed

from the tokenized text and the rest are stored in the no_stopwords column.

Stemming:

It is also known as the text standardization step where the words are stemmed or diminished to

their root/base form. For example, words like ‘programmer’, ‘programming, ‘program’ will be

stemmed to ‘program’.

But the disadvantage of stemming is that it stems the words such that its root form loses the

meaning or it is not diminished to a proper English word. We will see this in the steps done

below.

#importing the Stemming function from nltk library

from nltk.stem.porter import PorterStemmer

#defining the object for stemming

porter_stemmer = PorterStemmer()

#defining a function for stemming

def stemming(text):

stem_text = [porter_stemmer.stem(word) for word in text]

 return stem_text

data['msg_stemmed']=data['no_sw_msg'].apply(lambda x: stemming(x))

Output: In the below image, we can see how some words are stemmed to their base.

crazy-> crazi

available-> avail

entry-> entri

early-> earli

Lemmatization:

It stems the word but makes sure that it does not lose its meaning. Lemmatization has a pre-

defined dictionary that stores the context of words and checks the word in the dictionary while

diminishing.

The difference between Stemming and Lemmatization can be understood with the example

provided below.

Original Word After Stemming After Lemmatization

goose goos goose

geese gees goose

from nltk.stem import WordNetLemmatizer

#defining the object for Lemmatization

wordnet_lemmatizer = WordNetLemmatizer()

#defining the function for lemmatization

def lemmatizer(text):

lemm_text = [wordnet_lemmatizer.lemmatize(word) for word in text]

 return lemm_text

data['msg_lemmatized']=data['no_stopwords'].apply(lambda x:lemmatizer(x))

Output: The difference between Stemming and Lemmatization can be seen in the below output.

In the first row- crazy has been changed to crazi which has no meaning but for lemmatization,

it remained the same i.e crazy

In the last row- goes has changed to goe while stemming but for lemmatization, it has converted

into go which is meaningful.

	Punctuation Removal:
	Lowering the text:
	Stop word removal:
	Lemmatization:

